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A MULTIRATE NEUMANN--NEUMANN WAVEFORM
RELAXATION METHOD FOR HETEROGENEOUS COUPLED HEAT

EQUATIONS\ast 

AZAHAR MONGE\dagger AND PHILIPP BIRKEN\dagger 

Abstract. An important challenge when coupling two different time dependent problems is to
increase parallelization in time. We suggest a multirate Neumann--Neumann waveform relaxation
algorithm to solve two heterogeneous coupled heat equations. In order to fix the mismatch produced
by the multirate feature at the space-time interface a linear interpolation is constructed. The heat
equations are discretized using a finite element method in space, whereas two alternative time inte-
gration methods are used: implicit Euler and SDIRK2. We perform a one-dimensional convergence
analysis for the nonmultirate fully discretized heat equations using implicit Euler to find the optimal
relaxation parameter in terms of the material coefficients, the step size, and the mesh resolution. This
gives a very efficient method which needs only two iterations. Numerical results confirm the analysis
and show that the one-dimensional nonmultirate optimal relaxation parameter is a very good estima-
tor for the multirate one-dimensional case and even for multirate and nonmultirate two-dimensional
examples using both implicit Euler and SDIRK2.
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1. Introduction. The main goal of this work is to describe a partitioned algo-
rithm to solve two heterogeneous coupled heat equations allowing parallelization in
time. In a partitioned approach different codes for the subproblems are reused and the
coupling is done by a master program which calls interface functions of the segregated
codes [6, 7]. These algorithms are currently an active research topic driven by certain
multiphysics applications where multiple physical models or multiple simultaneous
physical phenomena involve solving coupled systems of partial differential equations
(PDEs). An example of this is fluid structure interaction (FSI) [34, 4]. Moreover,
we want that the time parallelization performed at the subsolvers works for different
time grids. This is handled through multirate methods which are a classical field of
research (see [9]).

Our prime motivation here is thermal interaction between fluids and structures,
also called conjugate heat transfer. There are two domains with jumps in the material
coefficients across the connecting interface. Conjugate heat transfer plays an impor-
tant role in many applications and its simulation has proved essential [1]. Examples
for thermal fluid structure interaction are cooling of gas-turbine blades, thermal an-
tiicing systems of airplanes [5], supersonic reentry of vehicles from space [28, 17], gas
quenching, which is an industrial heat treatment of metal workpieces [16, 32], or the
cooling of rocket nozzles [20, 21].
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The classical way of parallelizing the numerical solution of PDEs is to use domain
decomposition (DD) methods. These split the computational domain into subdomains
and coordinate the coupling between the subdomains in an iterative manner. For an
introduction to DD methods and their basic convergence results see [31, 33]. The
Dirichlet--Neumann iteration is a standard DD method to find solutions of the coupled
problem. The PDEs are solved sequentially using a Dirichlet, respectively, Neumann,
boundary with data given from the solution of the other problem. Previous numerical
experiments [2] showed that this iteration is fast for thermal FSI, and a convergence
analysis of two heterogeneous linear heat equations showed that the fast behavior was
a consequence of the strong jumps in the material coefficients [29].

In spite of that, it has two main disadvantages. First, the subsolvers wait for
each other, and therefore, they perform sequentially. Second, in the time dependent
case the Dirichlet--Neumann iteration is used at each time step and consequently,
both fields are solved with a common time resolution. Using instead a multirate
scheme that allows for different time resolutions on each subdomain would be more
efficient.

The aim of this work is to present a high order, parallel, multirate method for two
heterogeneous coupled heat equations which could be applied to FSI problems. We
use the Neumann--Neumann waveform relaxation (NNWR) method of Gander and
others [22, 12], which is a waveform relaxation (WR) method based on the classical
Neumann--Neumann iteration. Here, we describe a multirate version of it in de-
tail. For time discretization we consider two alternatives, the implicit Euler method
and a second order singly diagonally implicit Runge--Kutta (SDIRK2) method. WR
methods were originally introduced by [23] for ordinary differential equation (ODE)
systems and used for the first time to solve time dependent PDEs in [13, 14]. They
allow the use of different spatial and time discretizations for each subdomain which
is specially useful in problems with strong jumps in the material coefficients [11] or
the coupling of different models for the subdomains [10]. A time adaptive partitioned
approach for thermal FSI was presented in [3]. In [27], two new iterative partitioned
coupling methods that allow for the simultaneous execution of flow and structure
solvers were introduced. Furthermore, multirate approaches for the coupling of het-
erogeneous materials using the optimized Schwarz algorithm were presented in [15]
for the advection-diffusion equation, in [24] for coupled ocean-atmospheric problems,
and in [19] for fracture models in mixed formulation. However, parallelization in
time for the coupling of heterogeneous materials using the NNWR method was not
considered.

Our algorithm has to take care of two aspects. On one hand, an interpolation
procedure needs to be chosen to communicate data between the subdomains through
the space-time interface in the multirate case. We want that the interpolation pre-
serves a second order numerical solution of the coupled problem when using SDIRK2.
On the other hand, the choice of the relaxation parameter for the NNWR method
is crucial because when choosing the relaxation parameter right, two iterations are
sufficient for two equispaced subdomains. In [22], a one-dimensional analysis based
on Laplace transform at the continuous level shows that \Theta = 1/4 is the optimal
relaxation parameter for two homogeneous coupled heat equations on two identical
subdomains.

In this paper, we perform a fully discrete analysis of the NNWR algorithm for
two heterogeneous coupled one-dimensional heat equations to find the optimal relax-
ation parameter in terms of the material coefficients. More specifically, we derive the
iteration matrix of the fully discrete NNWR algorithm with respect to the interface
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unknowns. Then, we calculate the spectral radius of the iteration matrix through its
eigendecomposition in order to estimate the optimal relaxation parameter \Theta opt which
is dependent on the material coefficients, the time, and space resolutions. In the case
of homogeneous materials, \Theta opt = 1/4 recovering the result in [22]. Furthermore, the
asymptotic optimal relaxation parameters when approaching the continuous case in
either time or space are also determined.

In addition, we include numerical results where it is shown that the parallel,
multirate method for two heterogeneous coupled heat equations introduced in this
paper is extremely fast when choosing the right relaxation parameter. Moreover, we
also show that the one-dimensional formula is a very good estimate for the multirate
one-dimensional case and even for multirate and nonmultirate two-dimensional ex-
amples using both implicit Euler and SDIRK2. Finally, we also include a numerical
comparison that shows that the NNWR method is a more efficient choice than the
Dirichlet--Neumann waveform relaxation (DNWR) in the multirate case.

2. Model problem. The unsteady transmission problem reads as follows, where
we consider a domain \Omega \subset \BbbR d which is cut into two subdomains \Omega = \Omega 1 \cup \Omega 2 with
transmission conditions at the interface \Gamma = \partial \Omega 1 \cap \partial \Omega 2:\left\{                   

\alpha m
\partial um(x,t)

\partial t  - \nabla \cdot (\lambda m\nabla um(x, t)) = 0, x \in \Omega m \subset \BbbR d, m = 1, 2,

um(x, t) = 0, x \in \partial \Omega m\setminus \Gamma ,

u1(x, t) = u2(x, t), x \in \Gamma ,

\lambda 2
\partial u2(x,t)
\partial n2

=  - \lambda 1 \partial u1(x,t)
\partial n1

, x \in \Gamma ,

um(x, 0) = u0m(x), x \in \Omega m,

(2.1)

where t \in [T0, Tf ] and nm is the outward normal to \Omega m for m = 1, 2.
The constants \lambda m describe the thermal conductivities of the materials on \Omega m.

Dm represent the thermal diffusivities of the materials and they are defined by Dm =
\lambda m/\alpha m with \alpha m = \rho mcpm , where \rho m represents the density and cpm the specific heat
capacity. In this work we consider the case of constant material coefficients. For
variable material coefficients \alpha m(x, t) and \lambda m(x, t), we expect from previous work on
the Dirichlet--Neumann iteration [29] that also here, it is the jump directly at the
interface that dictates the convergence behavior.

3. The Dirichlet--Neumann waveform relaxation algorithm. The DNWR
method is a basic iterative substructuring method in domain decomposition. The
PDEs are solved sequentially using Dirichlet, respectively, Neumann, boundary with
data given from the solution of the other problem introduced in [25, 26].

It starts with an initial guess g0(x, t) on the interface \Gamma \times (T0, Tf ], and then per-
forms a three-step iteration. At each iteration k, imposing continuity of the solution
across the interface, one first finds the local solution uk+1

1 (x, t) in \Omega 1 by solving the
Dirichlet problem:\left\{               

\alpha 1
\partial uk+1

1 (x,t)
\partial t  - \nabla \cdot (\lambda 1\nabla uk+1

1 (x, t)) = 0, x \in \Omega 1,

uk+1
1 (x, t) = 0, x \in \partial \Omega 1\setminus \Gamma ,

uk+1
1 (x, t) = gk(x, t), x \in \Gamma ,

uk+1
1 (x, 0) = u01(x), x \in \Omega 1.

(3.1)
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Then, imposing continuity of the heat fluxes across the interface, one finds the
local solution uk+1

2 (x, t) on \Omega 2 by solving the Neumann problem:\left\{           
\alpha 2

\partial uk+1
2 (x,t)
\partial t  - \nabla \cdot (\lambda 2\nabla uk+1

2 (x, t)) = 0, x \in \Omega 2,

uk+1
2 (x, t) = 0, x \in \partial \Omega 2\setminus \Gamma ,
\lambda 2

\partial uk+1
2 (x,t)
\partial n2

=  - \lambda 1 \partial u
k+1
1 (x,t)
\partial n1

, x \in \Gamma ,

uk+1
2 (x, 0) = u02(x), x \in \Omega 2.

(3.2)

Finally, the interface values are updated with

gk+1(x, t) = \Theta uk+1
2 (x, t) + (1 - \Theta )gk(x, t), x \in \Gamma ,(3.3)

where \Theta \in (0, 1] is the relaxation parameter. The optimal relaxation parameter
for the DNWR algorithm has been proved to be \Theta = 1/2 in [12] for the choice
\lambda 1/\alpha 1 = \lambda 2/\alpha 2 = constant.

4. The Neumann--Neumann waveform relaxation algorithm. We now de-
scribe the NNWR algorithm [22], [18, Chap. 2]. The main advantage of the NNWR
method with respect to the DNWR method is that it allows for spatial parallelization
even though the DNWR method can also be parallelized to some extent. For instance,
in [30] the entire space-time domain is subdivided into smaller blocks. Then, rear-
ranging the order of operations, different iterates can be simultaneously computed in
a pipeline-parallel fashion.

The NNWR algorithm starts with an initial guess g0(x, t) on the space-time
interface \Gamma \times (T0, Tf ], and then performs a three-step iteration. At each iteration
k, one first solves two Dirichlet problems on \Omega 1 and \Omega 2 simultaneously, then two
Neumann problems are solved simultaneously again on \Omega 1 and \Omega 2, and finally, an
update is performed to get a new guess gk+1(x, t) on the interface \Gamma \times (T0, Tf ].

More specifically, imposing continuity of the solution across the interface (i.e.,
given a common initial guess g0(x, t) on \Gamma \times (T0, Tf )), one can find the local solutions
uk+1
m (x, t) on \Omega m, m = 1, 2, through the following Dirichlet problems:\left\{           

\alpha m
\partial uk+1

m (x,t)
\partial t  - \nabla \cdot (\lambda m\nabla uk+1

m (x, t)) = 0, x \in \Omega m,

uk+1
m (x, t) = 0, x \in \partial \Omega m\setminus \Gamma ,
uk+1
m (x, t) = gk(x, t), x \in \Gamma ,

uk+1
m (x, 0) = u0m(x), x \in \Omega m.

(4.1)

We now add into the framework the second coupling condition which is the conti-
nuity of the heat fluxes. To this end, one solves two simultaneous Neumann problems
to get the correction functions \psi k+1

m (x, t) on \Omega m, m = 1, 2, where the Neumann
boundary condition at the interface \Gamma \times (T0, Tf ) is prescribed by the continuity of the
heat fluxes of the solutions uk+1

m (x, t) given by the Dirichlet problems:\left\{           
\alpha m

\partial \psi k+1
m (x,t)
\partial t  - \nabla \cdot (\lambda m\nabla \psi k+1

m (x, t)) = 0, x \in \Omega m,

\psi k+1
m (x, t) = 0, x \in \partial \Omega m\setminus \Gamma ,

\lambda m
\partial \psi k+1

m (x,t)
\partial nm

= \lambda 1
\partial uk+1

1 (x,t)
\partial n1

+ \lambda 2
\partial uk+1

2 (x,t)
\partial n2

, x \in \Gamma ,

\psi k+1
m (x, 0) = 0, x \in \Omega m.

(4.2)

Finally, the interface values are updated with

gk+1(x, t) = gk(x, t) - \Theta (\psi k+1
1 (x, t) + \psi k+1

2 (x, t)), x \in \Gamma ,(4.3)
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where \Theta \in (0, 1] is the relaxation parameter. Note that choosing an appropriate relax-
ation parameter is crucial to get a great rate of convergence of the NNWR algorithm
[12]. If one uses the optimal relaxation parameter, two iterations are enough when
the lengths of the subdomains are equal.

5. Semidiscrete method. We now describe a rather general space discretiza-
tion of the problem (4.1)--(4.3). We assume that the meshes of \Omega 1 and \Omega 2 share the
same nodes on \Gamma . Furthermore, we assume that there is a specific set of unknowns
associated with the interface nodes. Otherwise, we allow at this point for arbitrary
meshes on both sides.

Then, letting u
(m)
I , \psi 

(m)
I : [T0, Tf ] \rightarrow \BbbR Rm , where Rm is the number of grid points

on \Omega m, m = 1, 2, and u\Gamma , \psi 
(1)
\Gamma , \psi 

(2)
\Gamma : [T0, Tf ] \rightarrow \BbbR s, where s is the number of common

grid points at the interface \Gamma , we can write a general discretization of the first equation
in (4.1) and (4.2), respectively, in a compact form as

M
(m)
II \.u

(m),k+1
I (t) +A

(m)
II u

(m),k+1
I (t) =  - M

(m)
I\Gamma \.uk\Gamma (t) - A

(m)
I\Gamma uk\Gamma (t),(5.1)

M
(m)
II

\.\psi 
(m),k+1
I (t) +M

(m)
I\Gamma 

\.\psi 
(m),k+1
\Gamma (t) +A

(m)
II \psi 

(m),k+1
I (t) +A

(m)
I\Gamma \psi 

(m),k+1
\Gamma (t) = 0,

(5.2)

where the initial conditions u
(m)
I (T0), \psi 

(m)
I (T0) \in \BbbR Rm and u\Gamma (T0), \psi 

(m)
\Gamma (T0) \in \BbbR s

for m = 1, 2 are known.
To close the system, we need an approximation of the normal derivatives on \Gamma .

Those can be written as a linear functional using Green's formula [33, p. 3]. Thus,
the equation

M
(m)
\Gamma \Gamma 

\.\psi 
(m),k+1
\Gamma (t) +M

(m)
\Gamma I

\.\psi 
(m),k+1
I (t) +A

(m)
\Gamma \Gamma \psi 

(m),k+1
\Gamma (t) +A

(m)
\Gamma I \psi 

(m),k+1
I (t)

=

2\sum 
i=1

\Bigl( 
M

(i)
\Gamma \Gamma \.uk\Gamma (t) +M

(i)
\Gamma I \.u

(i),k+1
I (t) +A

(i)
\Gamma \Gamma u

k
\Gamma (t) +A

(i)
\Gamma Iu

(i),k+1
I (t)

\Bigr) 
, m = 1, 2,

(5.3)

is a discrete version of the third equation in (4.2) and completes the system (5.2).
Check [29] for details.

We can now write a semidiscrete version of the NNWR algorithm using an ODE
system. At each iteration k, one first solves the two Dirichlet problems in (5.1)

obtaining u
(m),k+1
I (t) for m = 1, 2. Then, for the vector of unknowns \psi k+1

m (t) =

(\psi 
(m),k+1
I (t)

T
\psi 
(m),k+1
\Gamma (t)

T
)T , one solves the following two Neumann problems in par-

allel that correspond to (5.2)--(5.3):

Mm
\.\psi k+1
m (t) +Am\psi 

k+1
m (t) = bk, m = 1, 2,(5.4)

where

Mm =

\Biggl( 
M

(m)
II M

(m)
I\Gamma 

M
(m)
\Gamma I M

(m)
\Gamma \Gamma 

\Biggr) 
, Am =

\Biggl( 
A

(m)
II A

(m)
I\Gamma 

A
(m)
\Gamma I A

(m)
\Gamma \Gamma 

\Biggr) 
, bk =

\biggl( 
0

Fk

\biggr) 
(5.5)

with

Fk =

2\sum 
i=1

\Bigl( 
M

(i)
\Gamma \Gamma \.uk\Gamma (t) +M

(i)
\Gamma I \.u

(i),k+1
I (t) +A

(i)
\Gamma \Gamma u

k
\Gamma (t) +A

(i)
\Gamma Iu

(i),k+1
I (t)

\Bigr) 
.(5.6)
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Finally, the interface values are updated by

uk+1
\Gamma (t) = uk\Gamma (t) - \Theta 

\Bigl( 
\psi 
(1),k+1
\Gamma (t) + \psi 

(2),k+1
\Gamma (t)

\Bigr) 
.(5.7)

The iteration starts with some initial condition u0
\Gamma (t) and a termination criterion

must be chosen. One option would be \| uk+1
\Gamma (t) - uk\Gamma (t)\| \leq TOL, where TOL is a user

defined tolerance. However, this option is memory consuming because it saves the
solutions for all t \in [T0, Tf ]. Moreover, an extra interpolation step is needed in the
multirate case, i.e., when having two nonconforming time grids. As we expect the error
to be largest at the end point Tf and because it simplifies the analysis to be presented
for finding the optimal relaxation parameter, we propose the criterion \| uk+1

\Gamma (Tf )  - 
uk\Gamma (Tf )\| \leq TOL, where Tf is the synchronization endpoint of the macrostep.

6. Space-time interface interpolation. The NNWR algorithm for parabolic
problems was first introduced in [22, 12]. They only briefly mention the possibility
of using different step sizes on the two subdomains and provide one set of numer-
ical results without going into details. In addition, their analysis does not include
the coupling of two different materials. For those reasons, the goal of this paper
is to introduce a parallel multirate method for the coupling of two heterogeneous
heat equations and analyze its performance in the fully discrete case. This would
be especially useful when coupling two different materials, where typically the field
with higher heat conductivity needs a finer resolution than the other and therefore,
efficiency will be gained by using a multirate method.

Both the Dirichlet and the Neumann problems (5.1) and (5.4) allow the use of
independent time discretization on each of the subdomains. Therefore, in the case of
mismatched time grids, there exists the need to define an interface interpolation.

Consider \tau 1 = \{ t1, t2, . . . , tN1\} and \tau 2 = \{ t1, t2, . . . , tN2\} to be two partitions of
the time interval [T0, Tf ]. To exchange data at the space-time interface between the
different time grids, we use linear interpolation. Given the local discrete solutions
F \in \BbbR s\times N1 and G \in \BbbR s\times N2 at the space-time interface \Gamma \times [T0, Tf ], with s being the
number of grid points at \Gamma , we use the following procedure: For each k = 1, 2, . . . , s
and for each ti \in \tau 2, find the subinterval in \tau 1 such that ti \in [tj , tj+1]. Linear
interpolation through the points (tj , F (xk, tj)) gives G(xk, tj). We denote this by the
interpolation function G = I(\tau 2, \tau 1, F ) and conversely, F = I(\tau 1, \tau 2, G).

7. Time integration. In this section we present a time discretized version
of the NNWR method presented in equations (5.1), (5.4), and (5.7). In order to
get a multirate algorithm we use a certain time integration method with time step
\Delta t1 := (Tf  - T0)/N1 on \Omega 1 and with time step \Delta t2 := (Tf  - T0)/N2 on \Omega 2 and the
interpolation presented in the previous section will be used to transfer data from one
domain to the other. We let nm := 1, 2, . . . , Nm be the time integration indeces with
respect to \Omega m and tnm

defines any time point of the grid for m = 1, 2. We have
chosen two alternative time integration schemes as a basis to construct the multirate
algorithm: the implicit Euler method and an SDIRK2 method.

7.1. Implicit Euler. Applying the implicit Euler method with time step \Delta t1
on \Omega 1 and with time step \Delta t2 on \Omega 2, we can write the systems (5.1), (5.4), and (5.7)
in a fully discrete form.

The local approximations and the solutions at the space-time interface are given

by the vectors u
(m),k,nm

I \approx u
(m),k
I (tnm) \in \BbbR Rm and uk,nm

\Gamma \approx uk\Gamma (tnm) \in \BbbR s, respec-
tively. Remember thatRm is the number of spatial grid points on \Omega m and s is the num-
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ber of spatial grid points at the interface \Gamma . Similarly, the corrections both in the sub-

domains and at the interface are given by the vectors \psi 
(m),k,nm

I \approx \psi 
(m),k
I (tnm

) \in \BbbR Rm

and \psi 
(m),k,nm

\Gamma \approx \psi 
(m),k
\Gamma (tnm) \in \BbbR s, respectively.

At each iteration k, one first solves the two Dirichlet problems from (5.1) for

nm = 1, 2, . . . , Nm with u
(m),k+1,0
I \approx u

(m)
I (T0), m = 1, 2, and uk+1,0

\Gamma \approx u\Gamma (T0)
simultaneously:\Biggl( 

M
(m)
II

\Delta tm
+A

(m)
II

\Biggr) 
u
(m),k+1,nm+1
I = - 

\Biggl( 
M

(m)
I\Gamma 

\Delta tm
+A

(m)
I\Gamma 

\Biggr) 
uk,nm+1
\Gamma 

+
M

(m)
II

\Delta tm
u
(m),k+1,nm

I +
M

(m)
I\Gamma 

\Delta tm
uk,nm

\Gamma 

(7.1)

for m = 1, 2. Note that interpolation is not needed to solve the Dirichlet problems

because u
(1),k+1,n1+1
I in (7.1) is only dependent on terms related to \Omega 1. In the same

way, u
(2),k+1,n2+1
I in (7.1) only depends on n2.

We compute now the fluxes \~F
k,\tau 1
1 := \~f

k,\tau 1
1 + I(\tau 1, \tau 2,\~f

k,\tau 2
2 ) and \~F

k,\tau 2
2 := \~f

k,\tau 2
2 +

I(\tau 2, \tau 1,\~f
k,\tau 1
1 ) in (5.6) with

\~f
k,nm

m =

\Biggl( 
M

(m)
\Gamma \Gamma 

\Delta tm
+A

(m)
\Gamma \Gamma 

\Biggr) 
uk,nm+1
\Gamma +

\Biggl( 
M

(m)
\Gamma I

\Delta tm
+A

(m)
\Gamma I

\Biggr) 
u
(m),k+1,nm+1
I

 - 
M

(m)
\Gamma \Gamma 

\Delta tm
uk,nm

\Gamma  - 
M

(m)
\Gamma I

\Delta tm
u
(m),k+1,nm

I ,

(7.2)

where nm = 1, . . . , Nm and \tau m = \{ t1, t2, . . . , tNm
\} are the corresponding time grids

on \Omega m for m = 1, 2. Note that unlike in the Dirichlet problems, we need to use the

interpolation described in the previous section. We use it to calculate \~F
k,\tau 1
1 and \~F

k,\tau 2
2

because their components run over different time integrations (one indicated by n1
and the other by n2).

One can now rewrite the Neumann problems in (5.4) in terms of the vector of
unknowns

\psi k+1,nm+1
m :=

\biggl( 
\psi 
(m),k+1,nm+1
I

T
\psi 
(m),k+1,nm+1
\Gamma 

T
\biggr) T

.

solves the two Neumann problems for nm = 1, 2, . . . , Nm with \psi k+1,0
m \approx \psi m(T0),

m = 1, 2, in parallel:\biggl( 
Mm

\Delta tm
+Am

\biggr) 
\psi k+1,nm+1
m =

Mm

\Delta tm
\psi k+1,nm
m + \~b

k,nm
,(7.3)

where
\~b
k,nm

=
\Bigl( 
0T \~F

k,nmT

m

\Bigr) T
.

Then, the interface values are updated, respectively, by

uk+1,\tau 1
\Gamma = uk,\tau 1\Gamma  - \Theta 

\Bigl( 
\psi 
(1),k+1,\tau 1
\Gamma + I

\Bigl( 
\tau 1, \tau 2, \psi 

(2),k+1,\tau 2
\Gamma 

\Bigr) \Bigr) 
,(7.4)

uk+1,\tau 2
\Gamma = uk,\tau 2\Gamma  - \Theta 

\Bigl( 
\psi 
(2),k+1,\tau 2
\Gamma + I

\Bigl( 
\tau 2, \tau 1, \psi 

(1),k+1,\tau 1
\Gamma 

\Bigr) \Bigr) 
.(7.5)
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Here, interpolation is needed to perform the additions because \psi 
(1),k+1,\tau 1
\Gamma and \psi 

(2),k+1,\tau 2
\Gamma 

correspond to different time integrations. Note that (7.4) and (7.5) correspond to the
same interface function, but evaluated on different time grids \tau 1 or \tau 2.

Finally, if the termination criteria \| uk+1,Nm

\Gamma  - uk,Nm

\Gamma \| \approx \| uk+1
\Gamma (Tf ) - uk\Gamma (Tf )\| is

not small enough, one starts the process from (7.1) once more. Figure 1 sketches the
communication needed for the NNWR algorithm just explained.

7.2. SDIRK2. As an alternative, we introduce here a higher order version of
the multirate algorithm presented above. Specifically, we consider SDIRK2 as a basis
to discretize the systems (5.1), (5.4), and (5.7) in time. Consider an autonomous
initial value problem

\.u(t) = f(u(t)), u(0) = u0.(7.6)

An SDIRK method is then defined as

Ui = un +\Delta tn

i\sum 
k=1

aikf(U
k), i = 1, . . . , j,

un+1 = un +\Delta tn

j\sum 
i=1

bif(U
i)

(7.7)

with given coefficients aik and bi. The two-stage method SDIRK2 is defined by the
coefficients in the following Butcher array:

a a 0
1 1 - a a

1 - a a

with a = 1 - 1
2

\surd 
2. As the coefficients a2i and bi for i = 1, 2 are identical, the second

equation in (7.7) is superfluous because un+1 = U2. The vectors ki = f(Ui) are called
stage derivatives and j is the number of stages. Since the starting vector

si = un +\Delta tn

i - 1\sum 
k=1

aikkk, i = 1, . . . , j  - 1,(7.8)

is known, (7.7) is just a sequence of implicit Euler steps.
Applying SDIRK2 with time step \Delta t1 on \Omega 1 and with time step \Delta t2 on \Omega 2 we

can write the systems (5.1), (5.4), and (5.7) in a fully discrete form. This algorithm
preserves more or less the same structure as the one presented above for implicit Euler.
The main difference lies in the fact that now both the Dirichlet and the Neumann
solvers have to take into account the two stages of SDIRK2 and the interpolation has
to be applied for each stage.

Therefore, at each fixed point iteration k, let s
(m)
1 = u

(m),k+1,nm

I and s
(m)
2 =

u
(m),k+1,nm

I + \Delta tm(1  - a)k
(m)
1 be the starting vectors. Then, one first solves the

two Dirichlet problems for nm = 1, 2, . . . , Nm with u
(m),k+1,0
I , m = 1, 2, uk+1,0

\Gamma ,
simultaneously:\Biggl( 

M
(m)
II

a\Delta tm
+A

(m)
II

\Biggr) 
U

(m)
j =

M
(m)
II

a\Delta tm
s
(m)
j  - M

(m)
I\Gamma \.u

k,nm+j - 1+(2 - j)a
\Gamma 

 - A
(m)
I\Gamma u

k,nm+j - 1+(2 - j)a
\Gamma , j = 1, 2,

u
(m),k+1,nm+1
I = U

(m)
2 ,

(7.9)
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Fig. 1. Illustration of the NNWR algorithm using implicit Euler. The process starts with

the space-time interface functions uk,\tau m
\Gamma , \tau m = \{ t1, t2, . . . , tNm\} for m = 1, 2, corresponding

to the two nonconforming time grids. Those are needed to run the Dirichlet solvers in paral-

lel getting u
(m),k+1,\tau m
I , m = 1, 2. In order to run the Neumann solvers for the corrections of

the solution, one needs to provide the fluxes \~f
k,\tau 1
1 , \~f

k,\tau 2
2 and their corresponding interpolations

I(\tau 2, \tau 1,\~f
k,\tau 1
1 ), I(\tau 1, \tau 2,\~f

k,\tau 2
2 ). One can then run the Neumann problems in parallel getting the

corrections \psi 
(1),k+1,\tau 1
\Gamma and \psi 

(2),k+1,\tau 2
\Gamma at the space-time interface. Finally, those and their inter-

polations I(\tau 1, \tau 2, \psi 
(2),k+1,\tau 2
\Gamma ) and I(\tau 2, \tau 1, \psi 

(1),k+1,\tau 1
\Gamma ) are used to update the space-time interface

values. If needed, the process is restarted.

where u
(m),k,nm

I , U
(m)
j , s

(m)
j , k

(m)
j \in \BbbR Rm , and uk,nm

\Gamma \in \BbbR s. The stage derivatives

are given by k
(m)
j = 1

a\Delta tm
(U

(m)
j  - s

(m)
j ). Note that the index m = 1, 2 denotes the

subdomain and the index j = 1, 2 denotes the stage.
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We compute now the fluxes F
(1),k,\tau 1
j := f

(1),k,\tau 1
j + I(\tau 1, \tau 2, f

(2),k,\tau 2
j ), F

(2),k,\tau 2
j :=

f
(2),k,\tau 2
j + I(\tau 2, \tau 1, f

(1),k,\tau 1
j ) in (5.6) with

f
(m),k,nm

j = M
(m)
\Gamma \Gamma \.u

k,nm+j - 1+(2 - j)a
\Gamma +M

(m)
\Gamma I k

(m)
j(7.10)

+A
(m)
\Gamma \Gamma u

k,nm+j - 1+(2 - j)a
\Gamma +A

(m)
\Gamma I U

(m)
j

for m = 1, 2. Note that interpolation here is needed because the components of

F
(1),k,\tau 1
j and F

(2),k,\tau 2
j for the two stages j = 1, 2 correspond to different time integra-

tions.
One can now rewrite the Neumann problems in (5.4) in terms of the vector of

unknowns \psi k+1,nm+1
m := (\psi 

(m),k+1,nm+1
I

T
\psi 
(m),k+1,nm+1
\Gamma 

T
)T , where \psi 

(m),k+1,nm+1
I \in 

\BbbR Rm and \psi 
(m),k+1,nm+1
\Gamma \in \BbbR s. Let s

(m)
1 = \psi k+1,nm

m and s
(m)
2 = \psi k+1,nm

m + \Delta tm(1  - 
a)k

(m)
1 be the starting vectors. One then solves the two Neumann problems for

nm = 1, 2, . . . , Nm with \psi k+1,0
m = \psi k+1

m (T0), m = 1, 2, in parallel:\biggl( 
Mm

a\Delta tm
+Am

\biggr) 
Y

(m)
j =

Mm

a\Delta tm
s
(m)
j + b

(m),k,nm

j , j = 1, 2,

\psi k+1,nm+1
m = Y

(m)
2 ,

(7.11)

where Y
(m)
j , s

(m)
j , b

(m),k,nm

j , k
(m)
j \in \BbbR Rm+s, k

(m)
j = 1

a\Delta tm
(Y

(m)
j  - s

(m)
j ), and

b
(m),k,nm

j = (0T F
(m),k,nmT
j )T .

Then, the interface values are updated, respectively, by

uk+1,\tau 1
\Gamma = uk,\tau 1\Gamma  - \Theta 

\Bigl( 
\psi 
(1),k+1,\tau 1
\Gamma + I

\Bigl( 
\tau 1, \tau 2, \psi 

(2),k+1,\tau 2
\Gamma 

\Bigr) \Bigr) 
,(7.12)

uk+1,\tau 2
\Gamma = uk,\tau 2\Gamma  - \Theta 

\Bigl( 
\psi 
(2),k+1,\tau 2
\Gamma + I

\Bigl( 
\tau 2, \tau 1, \psi 

(1),k+1,\tau 1
\Gamma 

\Bigr) \Bigr) 
.(7.13)

Here, interpolation is needed because \psi 
(1),k+1,\tau 1
\Gamma and \psi 

(2),k+1,\tau 2
\Gamma are nonconforming.

Finally, if the termination criteria \| uk+1,Nm

\Gamma  - uk,Nm

\Gamma \| is not small enough, one
starts the process from (7.9) once more.

A linear interpolation through (tnm
,uk,nm

\Gamma ) and (tnm
+\Delta tm,u

k,nm+1
\Gamma ) is used in

order to approximate uk,nm+a
\Gamma in the first equation of (7.9) and in the fluxes (7.10),

i.e.,

uk,nm+a
\Gamma \approx uk,nm

\Gamma + a
\Bigl( 
uk,nm+1
\Gamma  - uk,nm

\Gamma 

\Bigr) 
.(7.14)

Furthermore, there are first order time derivatives in the first equation of (7.9)
and in (7.10). We use forward differences to approximate all the remaining first order
derivatives:

\.u
k,nm+j - 1+(2 - j)a
\Gamma \approx 

uk,nm+1
\Gamma  - uk,nm

\Gamma 

\Delta tm
(7.15)

for j = 1, 2 andm = 1, 2. Summarizing, the SDIRK2-NNWR algorithm just presented
has the same structure as the implicit Euler NNWR algorithm described previously
and sketched in Figure 1. The main difference is that the whole procedure is repeated
twice, once for each stage.
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8. Derivation of the iteration matrix. We are interested in the performance
of the NNWR algorithm. As the rate of convergence of a linear iteration is given by the
spectral radius of its iteration matrix, we derive in this section the iteration matrix
with respect to the set of unknowns at the space-time interface for implicit Euler.
A similar analysis to find the convergence rates of the Dirichlet--Neumann iteration
for the unsteady transmission problem can be found in [29]. We intentionally avoid a
derivation for SDIRK2 and we will show in the numerical results section that NNWR-
SDIRK2 behaves as predicted by the analysis of implicit Euler. Similarly, we assume
that we have conforming time grids, i.e., \Delta t := \Delta t1 = \Delta t2, because we do not want
the space-time interpolation to interfere in the analysis. We will see later how far the
analysis performed for the nonmultirate case is applicable to the multirate case.

The goal now is to find the iteration matrix \Lambda with respect to the final synchro-
nization point uNm

\Gamma \approx u\Gamma (Tf ) because the global error over the time window [T0, Tf ]
is assumed to be increasing, having its maximum at the final time Tf . Thus, we will
find \Lambda such that

uk+1,Nm

\Gamma = \Lambda uk,Nm

\Gamma +

2\sum 
i=1

\bigl( 
\varphi k+1,\~\tau i + \varphi k,\tau i

\bigr) 
,(8.1)

where \varphi k,\tau m are terms dependent on solutions at the previous fixed point iteration k for
the time grids \tau m = \{ t1, t2, . . . , tNm

\} , m = 1, 2, and \varphi k+1,\~\tau m are terms dependent on
solutions at the current iteration k+1 but for the time grids \~\tau m = \{ t1, t2, . . . , tNm - 1\} \subset 
\tau m, m = 1, 2. To perform the analysis, we neglect all the solutions at previous time
steps (indicated by \varphi k+1,\~\tau m). Thus, we do not find the exact rate of convergence when
having more than one single time step, but instead a good estimate.

We now rewrite (7.1), (7.3), and (7.4)--(7.5) as an iteration for uk+1,Nm

\Gamma . As we
chose above, we omit all the terms in (8.1) except for the first two. We isolate the

term u
(m),k+1,Nm

I from (7.1) and \psi 
(m),k+1,Nm

I from the first equation in (7.3) leading
to

u
(m),k+1,Nm

I =  - 

\Biggl( 
M

(m)
II

\Delta t
+A

(m)
II

\Biggr)  - 1\Biggl( 
M

(m)
I\Gamma 

\Delta t
+A

(m)
I\Gamma 

\Biggr) 
uk,Nm

\Gamma ,(8.2)

\psi 
(m),k+1,Nm

I =  - 

\Biggl( 
M

(m)
II

\Delta t
+A

(m)
II

\Biggr)  - 1\Biggl( 
M

(m)
I\Gamma 

\Delta t
+A

(m)
I\Gamma 

\Biggr) 
\psi 
(m),k+1,Nm

\Gamma .(8.3)

Inserting (8.2) and (8.3) into the second equation of the system (7.3) we get

\psi 
(m),k+1,Nm

\Gamma = S(m) - 1
2\sum 
i=1

S(i)uk,Nm

\Gamma ,(8.4)

S(m) :=

\Biggl( 
M

(m)
\Gamma \Gamma 

\Delta t
+A

(m)
\Gamma \Gamma 

\Biggr) 
 - 

\Biggl( 
M

(m)
\Gamma I

\Delta t
+A

(m)
\Gamma I

\Biggr) \Biggl( 
M

(m)
II

\Delta t
+A

(m)
II

\Biggr)  - 1\Biggl( 
M

(m)
I\Gamma 

\Delta t
+A

(m)
I\Gamma 

\Biggr) 
.

(8.5)

Finally, inserting (8.4) into (7.4) or (7.5) one gets uk+1,Nm

\Gamma = \Lambda uk,Nm

\Gamma with

\Lambda = I - \Theta 
\Bigl( 
2I+ S(1) - 1

S(2) + S(2) - 1
S(1)

\Bigr) 
.(8.6)
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In the one-dimensional case, the iteration matrix \Lambda is just a real number and thus
its spectral radius is its modulus. Then, the optimal relaxation parameter \Theta opt in 1D
is given by

\Theta opt =
1

2 + S(1) - 1
S(2) + S(2) - 1

S(1)
.(8.7)

9. One-dimensional convergence analysis. So far, the derivation was per-
formed for a rather general discretization. In this section, we study the iteration
matrix \Lambda for a specific finite element (FE) discretization in 1D. We will give a for-
mula for the convergence rates. The behavior of the rates when approaching both the
continuous case in time and space is also given.

Specifically, we use \Omega 1 = [ - 1, 0], \Omega 2 = [0, 1]. For the FE discretization, we use
the standard piecewise-linear polynomials as test functions. Here we discretize \Omega m
into N + 1 equal sized cells of size \Delta x = 1/(N + 1) for m = 1, 2.

With ej =
\bigl( 
0 \cdot \cdot \cdot 0 1 0 \cdot \cdot \cdot 0

\bigr) T \in \BbbR N , where the only nonzero entry
is located at the jth position, the discretization matrices are given by

A
(m)
II =

\lambda m
\Delta x2

\left(      
2  - 1 0

 - 1 2
. . .

. . .
. . .  - 1

0  - 1 2

\right)      , M
(m)
II =

\alpha m
6

\left(      
4 1 0

1 4
. . .

. . .
. . . 1

0 1 4

\right)      ,

M
(m)
\Gamma \Gamma = 2\alpha m/6, A

(m)
\Gamma \Gamma = \lambda m/\Delta x

2, A
(1)
I\Gamma =  - (\lambda 1/\Delta x

2)eN , A
(2)
I\Gamma =  - (\lambda 2/\Delta x

2)e1,

M
(1)
I\Gamma = (\alpha 1/6)eN , M

(2)
I\Gamma = (\alpha 2/6)e1, M

(1)
\Gamma I = (\alpha 1/6)e

T
N , M

(2)
\Gamma I = (\alpha 2/6)e

T
1 , A

(1)
\Gamma I =

 - (\lambda 1/\Delta x
2)eTN , A

(2)
\Gamma I =  - (\lambda 2/\Delta x

2)eT1 . Here, A
(m)
II , M

(m)
II \in \BbbR N\times N , A

(m)
I\Gamma , M

(m)
I\Gamma \in 

\BbbR N\times 1 and A
(m)
\Gamma I , M

(m)
\Gamma I \in \BbbR 1\times N for m = 1, 2.

One computes S(m) form = 1, 2, by inserting the corresponding matrices specified
above in (8.5) obtaining

S(m) =

\biggl( 
\alpha m
3\Delta t

+
\lambda m
\Delta x2

\biggr) 
 - 
\biggl( 
\alpha m
6\Delta t

 - \lambda m
\Delta x2

\biggr) 2

eTX

\Biggl( 
M

(m)
II

\Delta t
+A

(m)
II

\Biggr)  - 1

eX ,(9.1)

where X = N for m = 1 and X = 1 for m = 2. Rewriting the matrices

(
M

(m)
II

\Delta t + A
(m)
II ) - 1 in terms of their eigendecomposition, lengthy computations give

the following explicit expressions for S(m) (see [29, sec. 5] for details):

S(m) =
6\Delta t\Delta x(\alpha m\Delta x2 + 3\lambda m\Delta t) - (\alpha m\Delta x2  - 6\lambda m\Delta t)2wm

18\Delta t2\Delta x3
,(9.2)

where

wm =

N\sum 
i=1

3\Delta t\Delta x2 sin2(i\pi \Delta x)

2\alpha m\Delta x2 + 6\lambda m\Delta t+ (\alpha m\Delta x2  - 6\lambda m\Delta t) cos(i\pi \Delta x)
.(9.3)
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With this we obtain an explicit formula for the optimal relaxation parameter \Theta opt
in (8.7):

\Theta opt =

\biggl( 
2 +

6\Delta t\Delta x(\alpha 2\Delta x
2 + 3\lambda 2\Delta t) - (\alpha 2\Delta x

2  - 6\lambda 2\Delta t)
2w2

6\Delta t\Delta x(\alpha 1\Delta x2 + 3\lambda 1\Delta t) - (\alpha 1\Delta x2  - 6\lambda 1\Delta t)2w1

+
6\Delta t\Delta x(\alpha 1\Delta x

2 + 3\lambda 1\Delta t) - (\alpha 1\Delta x
2  - 6\lambda 1\Delta t)

2w1

6\Delta t\Delta x(\alpha 2\Delta x2 + 3\lambda 2\Delta t) - (\alpha 2\Delta x2  - 6\lambda 2\Delta t)2w2

\biggr)  - 1

.

(9.4)

We could not find a way of simplifying the finite sum (9.3) because \Delta x depends
on N (i.e., \Delta x = 1/(N + 1)). However, (9.4) is a computable expression that gives
the optimal relaxation parameter \Theta opt of the NNWR algorithm using implicit Euler
for given \Delta x, \Delta t, \alpha m, and \lambda m, m = 1, 2.

We are now interested in the asymptotics of (9.4) with respect to both spatial
and temporal resolutions. To this end, we rewrite (9.4) in terms of c := \Delta t/\Delta x2:

\Theta opt =

\biggl( 
2 +

6\Delta t(\alpha 2 + 3\lambda 2c) - \Delta x(\alpha 2  - 6\lambda 2c)
2w\prime 

2

6\Delta t(\alpha 1 + 3\lambda 1c) - \Delta x(\alpha 1  - 6\lambda 1c)2w\prime 
1)

+
6\Delta t(\alpha 1 + 3\lambda 1c) - \Delta x(\alpha 1  - 6\lambda 1c)

2w\prime 
1

6\Delta t(\alpha 2 + 3\lambda 2c) - \Delta x(\alpha 2  - 6\lambda 2c)2w\prime 
2

\biggr)  - 1

,

(9.5)

where

w\prime 
m =

N\sum 
i=1

3\Delta t sin2(i\pi \Delta x)

2\alpha m + 6\lambda mc+ (\alpha m  - 6\lambda mc) cos(i\pi \Delta x)
(9.6)

for m = 1, 2.
Finally, we compute the limits c \rightarrow 0 and c \rightarrow \infty of the iteration matrix \Lambda . The

limit c \rightarrow 0 leads to the continuous case with respect to time and the limit c \rightarrow \infty 
leads to the continuous case with respect to space. On one hand, limc\rightarrow 0 \Lambda = 1  - 
\Theta (2 + \alpha 2/\alpha 1 + \alpha 1/\alpha 2) = 1 - \Theta 

\bigl( 
(\alpha 1 + \alpha 2)

2/\alpha 1\alpha 2

\bigr) 
. On the other hand, limc\rightarrow \infty \Lambda =

1 - \Theta (2 + \lambda 2/\lambda 1 + \lambda 1/\lambda 2) = 1 - \Theta 
\bigl( 
(\lambda 1 + \lambda 2)

2/\lambda 1\lambda 2
\bigr) 
. Consequently,

\Theta \{ c\rightarrow 0\} =
\alpha 1\alpha 2

(\alpha 1 + \alpha 2)2
,(9.7)

\Theta \{ c\rightarrow \infty \} =
\lambda 1\lambda 2

(\lambda 1 + \lambda 2)2
.(9.8)

The result obtained in (9.8) is consistent with the one-dimensional semidiscrete
analysis performed in [22]. There, a convergence analysis for the NNWR method
in (4.1), (4.2), and (4.3) with constant coefficients using Laplace transforms shows
that \Theta opt = 1/4 when the two subdomains \Omega 1 and \Omega 2 are identical. Their result is
recovered by our analysis when one approaches the continuous case in space in (9.8)
for constant coefficients, i.e., \lambda 1 = \lambda 2. In that case, one gets

\Theta opt =
\lambda 1\lambda 2

(\lambda 1 + \lambda 2)2
=

\lambda 21
4\lambda 21

=
1

4
.(9.9)

10. Numerical results. All the results in this section have been produced by
implementing algorithms 4 and 7 in Python using the FE discretization specified in
the previous section. First, we show numerically that the NNWR algorithm using
implicit Euler preserves first order and using SDIRK2 second order. Second, we show
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Fig. 2. Error plot of the coupled solution at the final time Tf for three different time grids.
\Delta x = 1/200, [T0, Tf ] = [0, 1], and TOL = 1e - 15. Air-steel thermal interaction using implicit Euler
and air-water thermal interaction using SDIRK2.

Table 1
Physical properties of the materials. \lambda is the thermal conductivity, \rho the density, and cp the

specific heat capacity and \alpha = \rho cp.

Material \lambda (W/mK) \rho (kg/m3) cp (J/kgK) \alpha (J/K m3)

Air 0.0243 1.293 1005 1299.5
Water 0.58 999.7 4192.1 4.1908e6
Steel 48.9 7836 443 3471348

the validity of (9.4) as an estimator for the optimal relaxation parameter \Theta opt of the
NNWR algorithm using implicit Euler. We also show that (9.4) is a good estimator for
the multirate case both using implicit Euler and SDIRK2 and also for two-dimensional
examples. Furthermore, we also show that the theoretical asymptotics deduced both
in (9.7) and (9.8) match the numerical experiments. Finally, a comparison between
the Dirichlet--Neumann and the Neuman--Neumann methods is included.

10.1. NNWR results. Figure 2 shows the error plots of the discrete coupled
solution at the final time Tf for the coupling of different materials using both implicit
Euler and SDIRK2. Physical properties of the materials are shown in Table 1. We
have considered two initial time grids (for \Delta tc = 1/10 and \Delta tf = 1/100 given), which
we then refine several times by a factor of 2:

\bullet (C-C): Two coarse conforming time grids with \Delta t1 = \Delta t2 = \Delta tc.
\bullet (C-F): Nonconforming time grids with \Delta t1 = \Delta tc and \Delta t2 = \Delta tf .

When coupling two different materials in the multirate case, we always assign the
finer grid to the material that has higher heat conductivity because it performs the
heat changes faster. In space, we fix \Delta x = 1/200 and we compute a reference solution
by solving (2.1) directly on a very fine time grid, with \Delta t = 1/1000. One observes in
Figure 2 that first and second order convergence are obtained in the nonconforming
case for implicit Euler and SDIRK2, respectively. Moreover, the errors obtained in the
multirate case (C-F) are nearly the same as in the coarser nonmultirate case (C-C).
Thus, the accuracy of the multirate case is determined by its coarser rate. This is
consistent with [35, 8], where the convergence of the discrete multirate WR algorithm
is independent of the ratio of time steps.

Figure 3 compares the behavior of the algorithm described in this paper using
implicit Euler (left plot) and SDIRK2 (right plot). It shows the convergence rates
in terms of the relaxation parameter \Theta for the one-dimensional thermal coupling
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Fig. 3. Air-water convergence rates as a function of the relaxation parameter \Theta in 1D. \Delta x =
1/100, \Delta tc = 100, and \Delta tf = 1. Left: \Lambda (\Theta ) in (8.6) and the experimental convergence rates both for
the multirate (C-F) and nonmultirate (C-C) cases using implicit Euler. Right: \Lambda (\Theta ) in (8.6) using
implicit Euler and the experimental convergence rates both for the multirate (C-F) and nonmultirate
(C-C) cases using SDIRK2.

10
−2

10
0

10
2

10
−2

10
−1

10
0

∆t
1
/∆t

2

C
on

v.
 R

at
es

 

 

Θ
opt

(∆t
1
)

Θ
opt

(∆t
2
)

10
−2

10
0

10
2

10
−2

10
−1

10
0

∆t
1
/∆t

2

C
on

v.
 R

at
es

 

 

Θ
opt

(∆t
1
)

Θ
opt

(∆t
2
)

Fig. 4. Convergence rates as a function of the temporal ratio \Delta t1/\Delta t2 for the air-water cou-
pling in 1D. We plot the convergence rates in the multirate case (\Delta t1 \not = \Delta t2) using the relaxation
parameters \Theta opt(\Delta t1) and \Theta opt(\Delta t2) in (9.4). \Delta t1/\Delta t2 = 1e - 3/2e - 1, 2e - 3/2e - 1, 1e - 2/2e - 
1, 2e - 2/2e - 1, 5e - 2/2e - 1, 1e - 1/2e - 1, 2e - 1/2e - 1, 2e - 1/1e - 1, 2e - 1/5e - 2, 2e - 1/2e - 
2, 2e - 1/1e - 2, 2e - 1/2e - 3, 2e - 1/1e - 3, and \Delta x = 1/100. Left: Implicit Euler. Right: SDIRK2.

between air and water. We have plotted \Lambda (\Theta ) in (8.6) with the one-dimensional space
discretization specified in section 9 and the experimental convergence rates for both
the multirate and nonmultirate cases. The relevance of the analysis presented above is
illustrated in Figure 3 because the algorithm is extremely fast at \Theta opt (converging in
two iterations), but if one deviates slightly from \Theta opt, we get a much slower method.
As can be seen in the left plot, the experimental convergence rates for the nonmultirate
case (C-C) are exactly predicted by the theory. Moreover, our formula also predicts
where the convergence rate of the NNWR algorithm in the multirate case (C-F)
is minimal. They are not identical because the linear interpolation performed at
the space-time interface in the multirate case is neglected in (8.1) to simplify the
theoretical analysis. One can also observe in the right plot that \Lambda (\Theta ) using implicit
Euler estimates quite well the optimal relaxation parameter of the NNWR algorithm
using SDIRK2 for both the multirate and nonmultirate cases.

In order to illustrate the behavior of the NNWR method in the multirate case
(\Delta t1 \not = \Delta t2), we have plotted in Figure 4 the convergence rates using the relaxation
parameters \Theta opt(\Delta t1) and \Theta opt(\Delta t2) in (9.4) with respect to the variation of \Delta t1/\Delta t2
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Fig. 5. Optimal relaxation parameter \Theta opt as a function of the parameter c := \Delta t/\Delta x2 for both
implicit Euler and SDIRK2 in 1D. The constant lines \Theta \{ c\rightarrow \infty \} and \Theta \{ c\rightarrow 0\} represent the spatial
and temporal asymptotics of \Theta opt in (9.5). \Delta t = 1e - 9, 1e - 8, . . . , 1e8, 1e9, and \Delta x = 1/100. Left:
Water-steel coupling. Right: Air-Water coupling.

for the air-water coupling. In Figure 4 we have chosen \Delta t1/\Delta t2 = 1e - 3/2e - 1, 2e - 
3/2e - 1, 1e - 2/2e - 1, 2e - 2/2e - 1, 5e - 2/2e - 1, 1e - 1/2e - 1, 2e - 1/2e - 1, 2e - 
1/1e - 1, 2e - 1/5e - 2, 2e - 1/2e - 2, 2e - 1/1e - 2, 2e - 1/2e - 3, 2e - 1/1e - 3, and
\Delta x = 1/100. One observes that the multirate method converges fast using any of the
two relaxation parameters for both implicit Euler and SDIRK2. Nevertheless, one
can also see in Figure 4 that even though we have not performed a specific analysis
for the optimal relaxation parameter in the multirate case, the \Theta opt in (9.4) can be
used as an estimator. More specifically, we conclude from Figure 4 that one can use
\Theta opt(\Delta t2) when \Delta t1 < \Delta t2 and \Theta opt(\Delta t1) when \Delta t1 > \Delta t2. Furthermore, one can
also observe in Figure 4 that the convergence rate in the multirate case \Delta t1 > \Delta t2
using \Theta opt(\Delta t1) does not deviate from the result derived for the nonmultirate case.

Figure 5 shows the optimal relaxation parameter \Theta opt with respect to the pa-
rameter c := \Delta t/\Delta x2 using both implicit Euler and SDIRK2. We have chosen
\Delta t = 1e  - 9, 1e  - 8, . . . , 1e8, 1e9, and \Delta x = 1/100. For implicit Euler, we have
plotted the function \Theta opt(c) in (9.5). For SDIRK2, we have plotted a sister function
\Theta opt(c) that can be found applying exactly the derivation presented in sections 8 and
9 to the discretized SDIRK2-NNWR method introduced in section 7.2. One can see
that the two time discretization methods have a similar behavior when varying c. This
illustrates why the optimal relaxation parameter \Theta opt computed in (9.4) for implicit
Euler is also valid for SDIRK2 as observed in Figure 3. Furthermore, in Figure 5
we observe that the optimal relaxation parameter for any given \Delta t and \Delta x is always
between the bounds of the theoretical asymptotics deduced both in (9.7) and (9.8),
tending to them in the temporal and spatial limits, respectively.

We now want to demonstrate that the one-dimensional formula (9.4) is a good
estimator for the optimal relaxation parameter \Theta opt in 2D. Thus, we now consider a
two-dimensional version of the model problem consisting of two coupled linear heat
equations on two identical unit squares, e.g, \Omega 1 = [ - 1, 0]\times [0, 1] and \Omega 2 = [0, 1]\times [0, 1].

Figure 6 shows the convergence rates in terms of the relaxation parameter \Theta for
two-dimensional examples. On the left we have the thermal coupling between air and
steel and on the right between air and water. One can observe that the convergence
rates of the NNWR method using \Theta opt from (9.4) in the two-dimensional examples
are worse than in 1D, but still optimal. Hence, we suggest to use \Theta opt in 2D as well;
otherwise the method is much slower.
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Fig. 7. Convergence rates as a function of the relaxation parameter \Theta for different distributions
of the subdomains. \Lambda (\Theta ) in (9.4) using implicit Euler and the experimental convergence rates for
two equivalent subdomains (\Omega 1 = \Omega 2), \Omega 1 > \Omega 2, and \Omega 1 < \Omega 2 using implicit Euler. \Delta x = 1/10 and
\Delta t1 = \Delta t2 = 1/10. Left: Air-water coupling in 1D. Right: Air-steel coupling in 2D.

To conclude this section Figure 7 shows that the convergence rates of the NNWR
algorithm do not get affected when changing the length subdomains in 1D and 2D.
In particular, Figure 7 shows the one-dimensional air-water coupling and the two-
dimensional air-steel coupling for equal subdomains (\Omega 1 = [0, 1] \equiv [1, 2] = \Omega 2 in
1D or \Omega 1 = [0, 1] \times [0, 1] \equiv [1, 2] \times [0, 1] = \Omega 2 in 2D), for \Omega 1 larger than \Omega 2

(\Omega 1 = [0, 1.5] > [1.5, 2] = \Omega 2 in 1D or \Omega 1 = [0, 1.5] \times [0, 1] > [1.5, 2] \times [0, 1] = \Omega 2

in 2D), and for \Omega 2 larger than \Omega 1 (\Omega 1 = [0, 0.5] < [0.5, 2] = \Omega 2 in 1D or \Omega 1 =
[0, 0.5] \times [0, 1] < [0.5, 2] \times [0, 1] = \Omega 2 in 2D)). One can see that the dimension of
the subdomains does not have a significative impact in the behavior of the algorithm
presented above.

10.2. NNWR-DNWR comparison. Finally, we compare the Dirichlet--
Neumann and the Neumann--Neumann couplings. We consider the FE discretization
specified in section 9 and the implicit Euler as a time integration method for both
DNWR and NNWR with \Delta x = 1/500. In addition, we will use \Theta = 1/2 as the optimal
relaxation parameter for the DNWR algorithm as suggested in [12] for constant mate-
rial coefficients. Note that the optimal relaxation parameter for the NNWR method is
\Theta opt = 1/4 (see (9.4)) in the case of constant coefficients because \lambda 1 = \lambda 2 and \alpha 1 = \alpha 2.
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Table 2
Computational effort of DNWR and NNWR for the one-dimensional steel-steel coupling in the

nonmultirate case. \Delta x = 1/500 and TOL = 1e - 8. Number of total iterations in brackets.

\Delta t Comp. Time - NNWR (s) Comp. Time - DNWR (s)

1 0.07 (2 iterations) 0.05 (2 iterations)
1/10 0.42 (2 iterations) 0.3 (2 iterations)
1/50 1.86 (2 iterations) 1.25 (2 iterations)
1/100 3.74 (2 iterations) 2.47 (2 iterations)

Table 3
Computational effort comparison of DNWR and NNWR for the one-dimensional steel-steel

coupling in the multirate case. \Delta x = 1/500 and TOL = 1e  - 8. Number of total iterations in
brackets.

\Delta t1  - \Delta t2 Comp. Time - NNWR (s) Comp. Time - DNWR (s)

1/5 - 1/10 0.48 (3 iterations) 0.70 (6 iterations)
1/5 - 1/50 1.5 (3 iterations) 26.98 (71 iterations)
1/5 - 1/100 2.74 (3 iterations) Not convergent

Table 4
Computational effort comparison of DNWR and NNWR for the one-dimensional air-steel cou-

pling in the multirate case. \Delta x = 1/500 and TOL = 1e - 8. Number of total iterations in brackets.

\Delta t1  - \Delta t2 Comp. Time - NNWR (s) Comp. Time - DNWR (s)

1/5 - 1/10 0.47 (3 iterations) 1.24 (12 iterations)
1/5 - 1/50 2.20 (4 iterations) 4.65 (12 iterations)
1/5 - 1/100 3.95 (4 iterations) 8.77 (12 iterations)

Table 2 shows the time needed to solve the one-dimensional steel-steel coupling
in the nonmultirate case. The number of total iterations needed to achieve a chosen
tolerance of 1e - 8 is also given. One can see that the DNWR method is sightly more
efficient than the NNWR method. Moreover, the NNWR algorithm runs in parallel
on two different processors using double the amount of computational power as the
DNWR. Thus, the DNWR method is a better option for this case because it is cheaper
and faster.

However, the NNWR algorithm beats the DNWR algorithm by far when we move
to the multirate environment. This is illustrated in Table 3, where the computational
effort used to solve the one-dimensonal steel-steel coupling in the multirate case is
shown. There, one can see how the number of total iterations needed to achieve a
tolerance of 1e - 8 using DNWR grows exponentially when the difference between \Delta t1
and \Delta t2 increases. On the contrary, the NNWR method is very efficient even when
there is a huge difference between \Delta t1 and \Delta t2. Thus, we recommend the NNWR
algorithm when coupling two fields with nonconforming time grids.

Finally, we have included a comparison for the one-dimensonal air-steel coupling
in the multirate case. This interaction between air and steel has the particularity of
strong jumps in the material coefficients across the space interface. In this case, we
have chosen \Theta = 1/2 for DNWR because even though in [12] it is only proved optimal
for the case of constant coefficients, they show in the numerical results section that it
also applies to an example where the diffusion coefficient varies spatially. Moreover,
\Theta opt in (9.4) is chosen for the NNWR method. Table 4 shows a comparison of the
computational time employed to solve the one-dimensonal air-steel coupling in the
multirate case. One can see that the NNWR method is more efficient than the DNWR
method because it needs many fewer iterations to achieve the same tolerance. Note
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that the number of iterations increases when the time resolution decreases for the
NNWR method. This happens because the analysis performed in section 8 to find
the optimal relaxation parameter takes into account only one single time step (see
(8.1)). Therefore, in the case of multiple time steps, \Theta opt in (9.4) is a very good
choice, but it is not optimal. Besides that, the large amount of iterations performed
by the DNWR algorithm hints that \Theta = 1/2 might not be the optimal relaxation
parameter when having strong jumps in the material coefficients for the fully discrete
problem. Thus, performing a specific analysis to find the optimal relaxation parameter
of the DNWR algorithm is left for future research.

11. Summary and conclusions. We suggested a new high order parallel NNWR
method with nonconforming time grids for two heterogeneous coupled heat equations
and studied the optimal relaxation parameter in terms of the material coefficients
and the temporal and spatial resolutions \Delta t and \Delta x. To this end, we considered the
coupling of two heat equations on two identical domains. We assumed structured
spatial grids and conforming time grids on both subdomains to derive a formula
for the optimal relaxation parameter \Theta opt in 1D using implicit Euler. Furthermore,
we determined the limits of the optimal relaxation parameter when approaching the
continuous case either in space (\lambda 1\lambda 2/(\lambda 1 + \lambda 2)

2) or time (\alpha 1\alpha 2/(\alpha 1 + \alpha 2)
2). The

method using \Theta opt converges extremely fast, typically within two iterations. This was
confirmed by numerical results, where we also demonstrated that the nonmultirate
one-dimensional case gives excellent estimates for the multirate one-dimensional case
and even for multirate and nonmultirate two-dimensional examples using both im-
plicit Euler and SDIRK2. In addition, we have shown that the NNWR method is a
more efficient choice than the classical DNWR in the multirate case.
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