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Abstract We consider time dependent thermal fluid structure interaction. The re-
spective models are the compressible Navier-Stokes equations and the nonlinear
heat equation. A partitioned coupling approach via a Dirichlet-Neumann method
and a fixed point iteration is employed. As a reference solver a previously devel-
oped efficient time adaptive higher order time integration scheme is used. To im-
prove upon this, we work on reducing the number of fixed point coupling iterations.
Thus, we explore the idea of extrapolation based on data given from the time in-
tegration and derive such methods for SDIRK2. This allows to reduce the number
of fixed point iterations further by up to a factor of two with linear extrapolation
performing better than quadratic.

1 Introduction

Thermal interaction between fluids and structures plays an important role in many
applications. Examples for this are cooling of gas-turbine blades, thermal anti-icing
systems of airplanes [7] or supersonic reentry of vehicles from space [17, 13]. An-
other is quenching, an industrial heat treatment of metal workpieces. There, the
desired material properties are achieved by rapid local cooling, which causes solid
phase changes, allowing to create graded materials with precisely defined properties.
Gas quenching recently received a lot of industrial and scientific interest [25, 12]. In
contrast to liquid quenching, this process has the advantage of minimal environmen-
tal impact because of non-toxic quenching media and clean products like air [22]. To
exploit the multiple advantages of gas quenching the application of computational
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fluid dynamics has proved essential [2, 22, 16]. Thus, we consider the coupling of
the compressible Navier-Stokes equations as a model for air, along a non-moving
boundary with the nonlinear heat equation as a model for the temperature distribu-
tion in steel.

For the solution of the coupled problem, we prefer a partitioned approach [9],
where different codes for the sub-problems are reused and the coupling is done by a
master program which calls interface functions of the other codes. This allows to use
existing software for each sub-problem, in contrast to a monolithic approach, where
a new code is tailored for the coupled equations. To satisfy the boundary conditions
at the interface, the subsolvers are iterated in a fixed point procedure. Our goal here
is to find a fast solver in this partitioned setting. One approach would be to speed
up the subsolvers and there is active research on that. See [4] for the current situ-
ation for fluid solvers. However, we want to approach the problem from the point
of view of a partitioned coupling method, meaning that we use the subsolvers as
they are. As a reference solver, we use the time adaptive higher order time integra-
tion method suggested in [6]. Namely, the singly diagonally implicit Runge-Kutta
(SDIRK) method SDIRK2 is employed.

To improve upon this, one idea is to define the tolerances in the subsolver in a
smart way and recently, progress has been made for steady problems [3]. However,
it is not immediately clear how to transfer these results to the unsteady case. Thus,
the most promising way is to reduce the number of fixed point iterations, on which
we will focus in the present article. Various methods have been proposed to increase
the convergence speed of the fixed point iteration by decreasing the interface error
between subsequent steps, for example Relaxation [15, 14], Interface-GMRES [18],
ROM-coupling [24] and multigrid coupling [23]. Here we follow instead the idea of
extrapolation based on knowledge about the time integration scheme. This has been
successfully used in other contexts [1, 8], but has to our knowledge never been tried
in Fluid Structure Interaction, where typically little attention is given to the time
integration. Here, we use linear and quadratic extrapolation of old values from the
time history, designed specifically for SDIRK2. The various methods are compared
on the basis of numerical examples, namely the flow past a flat plate, a basic test
case for thermal fluid structure interaction, an example from gas quenching [25]
and flow past a cylinder.

2 Governing Equations

The basic setting we are in is that on a domain Ω1 ⊂Rd the physics is described by
a fluid model, whereas on a domain Ω2 ⊂Rd , a different model describing the struc-
ture is used. The two domains are almost disjoint in that they are connected via an
interface. The part of the interface where the fluid and the structure are supposed to
interact is called the coupling interface Γ ⊂ ∂Ω1∪∂Ω2. Note that Γ might be a true
subset of the intersection, because the structure could be insulated. At the interface
Γ , coupling conditions are prescribed that model the interaction between fluid and
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structure. For the thermal coupling problem, these conditions are that temperature
and the normal component of the heat flux are continuous across the interface.

2.1 Fluid Model

We model the fluid using the time dependent Reynolds Averaged Navier-Stokes
(URANS) equations, which are a second order system of conservation laws (mass,
momentum, energy) modeling turbulent compressible flow. We consider the two
dimensional case, written in conservative variables density ρ , momentum m = ρv
and energy per unit volume ρE, where a ˜ denotes the Favre average and the overbar
the ensemble average:

∂tρ +∇ ·ρ ṽ = 0,

∂tρ ṽ+
2

∑
j=1

∂x j(ρ ṽiṽ j) =−∂x j pδi j +
1

Re

2

∑
j=1

∂x j

(
S̃i j +SR

i j
)
, i = 1,2 (1)

∂tρẼ +∇ ·(ρH̃ṽ j) =
2

∑
j=1

∂x j

(
(

1
Re

Si j−SR
i j)vi−ρ ṽ′′j + S̃i jvii

i −ρ ṽ′′j k+
W j

RePr

)
.

The Reynolds stresses

SR
i j =−ρ ṽ′′i v′′j

and the turbulent energy

k =
1
2

d

∑
j=1

v′jv
′
j

are modelled using the Spallart-Allmaras model [21]. Furthermore, q = (q1,q2)
T

represents the heat flux and S = (Si j)i, j=1,2 the viscous shear stress tensor. As the
equations are dimensionless, the Reynolds number Re and the Prandtl number Pr
appear. The system is closed by the equation of state for the pressure p = (γ−1)ρe,
the Sutherland law representing the correlation between temperature and viscosity
as well as the Stokes hypothesis. Additionally, we prescribe appropriate boundary
conditions at the boundary of Ω1 except for Γ , where we have the coupling condi-
tions. In the Dirichlet-Neumann coupling, a temperature value is enforced strongly
at Γ .

2.2 Structure Model

Regarding the structure model, we will consider heat conduction only. Thus, we
have the nonlinear heat equation for the structure temperature Θ
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ρ(x)cp(Θ)
d
dt

Θ(x, t) =−∇ ·q(x, t), (2)

where
q(x, t) =−λ (Θ)∇Θ(x, t)

denotes the heat flux vector. For steel, the specific heat capacity cp and heat conduc-
tivity λ are temperature-dependent and highly nonlinear. Here, an empirical model
for the steel 51CrV4 suggested in [20] is used. This model is characterized by the
coefficient functions

λ (Θ) = 40.1+0.05Θ −0.0001Θ
2 +4.9 ·10−8

Θ
3 (3)

and

cp(Θ) =−10ln

(
e−cp1(Θ)/10 + e−cp2(Θ)/10

2

)
(4)

with

cp1(Θ) = 34.2e0.0026Θ +421.15 (5)

and

cp2(Θ) = 956.5e−0.012(Θ−900)+0.45Θ . (6)

For the mass density one has ρ = 7836 kg/m3. Finally, on the boundary, we have
Neumann conditions q(x, t) ·n(x) = qb(x, t).

3 Discretization

3.1 Discretization in space

Following the partitioned coupling approach, we discretize the two models sepa-
rately in space. For the fluid, we use a finite volume method, leading to

d
dt

u+h(u,Θ) = 0, (7)

where h(u,Θ) represents the spatial discretization and its dependence on the tem-
peratures in the fluid. In particular, the DLR TAU-Code is employed [10], which is
a cell-vertex-type finite volume method with AUSMDV as flux function and a linear
reconstruction to increase the order of accuracy. Regarding structural mechanics, the
use of finite element methods is ubiquitous. Therefore, we will also follow that ap-
proach here and use quadratic finite elements [26], leading to the nonlinear equation
for all unknowns on Ω2
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M(Θ)
d
dt

Θ +K(Θ)Θ = qb(u). (8)

Here, M is the heat capacity and K the heat conductivity matrix. The vector Θ

consists of all discrete temperature unknowns and qb is the heat flux vector on the
surface. In this case it is the prescribed Neumann heat flux vector of the fluid.

3.2 Coupled time integration

For the time integration, a time adaptive SDIRK2 method is implemented in a par-
titioned way, as suggested in [6]. If the fluid and the solid solver are able to carry
out time steps of implicit Euler type, the master program of the FSI procedure can
be extended to SDIRK methods very easily, since the master program just has to
call the backward Euler routines with specific time step sizes and starting vectors.
This method is very efficient and will be used as the base method in its time adaptive
variant, which is much more efficient than more commonly used fixed time step size
schemes.

To obtain time adaptivity, embedded methods are used. Thereby, the local error
is estimated by the solvers separately, which then report the estimates back to the
master program. Based on this, the new time step is chosen [5]. To this end, all stage
derivatives are stored by the subsolvers. If the possibility of rejected time steps is
taken into account, the current solution pair (u,Θ) has to be stored as well.

To comply with the conditions that the discrete temperature and heat flux are con-
tinuous at the interface Γ , a Dirichlet-Neumann coupling is used. Thus, the bound-
ary conditions for the two solvers are chosen such that we prescribe Neumann data
for one solver and Dirichlet data for the other. Following the analysis of Giles [11],
temperature is prescribed for the equation with smaller heat conductivity, here the
fluid, and heat flux is given on Γ for the structure. Choosing these conditions the
other way around leads to an unstable scheme.

In the following it is assumed that at time tn, the step size ∆ tn is prescribed. Ap-
plying a DIRK method to equation (7)-(8) results in the coupled system of equations
to be solved at Runge-Kutta stage i, i = 1,2:

F(ui,Θ i) := ui− su
i −∆ tn aiih(ui,Θ i) = 0, (9)

T(ui,Θ i) := [M+∆ tn aiiK]Θ i−MsΘ
i −qb(ui) = 0. (10)

Here, aii = 1−
√

2/2 is a coefficient of the time integration method and su
i and sΘ

i
are given vectors, called starting vectors, computed inside the DIRK scheme. The
dependence of the fluid equations h(ui,Θ i) on the temperature Θ i results from the
nodal temperatures of the structure at the interface. This subset is written as Θ

Γ
i .

Accordingly, the structure equations depend only on the heat flux of the fluid at the
coupling interface.
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4 Fixed Point Iteration and Improvements

4.1 Basic fixed point iteration

To solve the coupled system of nonlinear equations (9)-(10), a strong coupling ap-
proach is employed. Thus, a fixed point iteration is iterated until a convergence
criterion is satisfied. In particular, we use a a nonlinear Gauß-Seidel process:

F(u(ν+1)
i ,Θ

(ν)
i ) = 0  u(ν+1)

i (11)

T(u(ν+1)
i ,Θ

(ν+1)
i ) = 0  Θ

(ν+1)
i , ν = 0,1, ... (12)

Each inner iteration is thereby done locally by the structure or the fluid solver. More
specific, a Newton method is used in the structure and a FAS multigrid method is
employed in the fluid. In the base method, the starting values of the iteration are
given by u(0)

i = su
i and Θ

(0)
i = sΘ

i . The termination criterion is formulated by the
relative update of the nodal temperatures at the interface of the solid structure and
the tolerance is chosen to avoid iteration errors to interfere with the error estimation
in the time adaptive method. Thus we stop once we are below the tolerance in the
time integration scheme divided by five

‖ΘΓ (ν+1)
i −Θ

Γ (ν)
i ‖ ≤ TOL/5‖ΘΓ (0)

i ‖. (13)

The vector

r(ν+1) :=Θ
Γ (ν+1)
i −Θ

Γ (ν)
i (14)

is often referred to as the interface residual. We will now consider different tech-
niques to improve upon this base iteration, namely extrapolation inside the time in-
tegration schemes, to obtain better initial values and then using vector extrapolation
inside the fixed point iteration to speed up the iteration.

4.2 Extrapolation from time integration

To find good starting values for iterative processes in implicit time integration
schemes, it is common to use extrapolation based on knowledge about the trajec-
tory of the solution of the initial value problem [8, 19]. In the spirit of partitioned
solvers, we here suggest to use extrapolation of the interface temperatures only.
On top, this strategy could be used as well within the subsolvers, but we will not
consider this here and use those solvers as they are. We now derive extrapolation
methods for SDIRK2.

At the first stage, we have the old time step size ∆ tn−1 with value Θn−1 and the
current time step size ∆ tn with value Θn. We are looking for the value Θ 1

n at the next
stage time tn + c1∆ tn with c1 = a11. Linear extrapolation results in
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Θ
1
n ≈Θn + c1∆ tn(Θn−Θn−1)/∆ tn−1 =

(
1+

c1∆ tn
∆ tn−1

)
Θn−

c1∆ tn
∆ tn−1

Θn−1. (15)

An alternative would be the intermediate temperature vector Θ 1
n−1 from the previous

stage tn−1 + c1∆ tn−1. This is a first order approximation to the stage value, whereas
the others are of second order. However, it is closer to tn + c1∆ tn, which might
make up for that. We thus tried both and found the methods to be almost identical.
From this on we will use (15). Regarding quadratic extrapolation, it is reasonable
to choose tn, tn−1 and the intermediate temperature vector Θ 1

n−1 from the previous
stage tn−1 + c1∆ tn−1. This results in

Θ
1
n ≈ Θn−1

(c1∆ tn+(1−c1)∆ tn−1)c1∆ tn
c1∆ t2

n−1
−Θ 1

n−1
(c1∆ tn+∆ tn−1)c1∆ tn

c1∆ t2
n−1(1−c1)

+Θn
(c1∆ tn+∆ tn−1)(c1∆ tn+(1−c1)∆ tn−1)

(1−c1)∆ t2
n−1

. (16)

At the second stage, we linearly extrapolate Θn at tn and Θ 1
n at tn + c1∆ t to obtain

Θn+1 ≈Θn +∆ tn(Θ 1
n −Θn)/(c1∆ tn) =

(
1− 1

c1

)
Θn +

1
c1

Θ
1
n . (17)

When applying quadratic extrapolation at the second stage (or at later stages in a
scheme with more than two), it is better to use values from the current time interval.
This results in

Θn+1 ≈ Θn−1
∆ t2

n (1−c1)
∆ tn−1(∆ tn−1+c1∆ tn)

−Θn
(∆ tn−1+∆ tn)(1−c1)∆ tn

∆ tn−1c1∆ tn

+Θ 1
n

(∆ tn−1+∆ tn)∆ tn
(c1∆ tn+∆ tn−1)c1∆ tn

. (18)

4.3 Flow over a plate

As a first test case, the cooling of a flat plate resembling a simple work piece is
considered. The work piece is initially at a much higher temperature than the fluid
and then cooled by a constant air stream, see figure 1.

Fig. 1 Test case for the coupling method
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The inlet is given on the left, where air enters the domain with an initial velocity
of Ma∞ = 0.8 in horizontal direction and a temperature of 273 K. Then, there are
two succeeding regularization regions of 50 mm to obtain an unperturbed boundary
layer. In the first region, 0≤ x≤ 50, symmetry boundary conditions, vy = 0, q = 0,
are applied. In the second region, 50 ≤ x ≤ 100, a constant wall temperature of
300 K is specified. Within this region the velocity boundary layer fully develops.
The third part is the solid (work piece) of length 200 mm, which exchanges heat
with the fluid, but is assumed insulated otherwise, thus qb = 0. Therefore, Neumann
boundary conditions are applied throughout. Finally, the fluid domain is closed by
a second regularization region of 100 mm with symmetry boundary conditions and
the outlet.

Regarding the initial conditions in the structure, a constant temperature of 900 K
at t = 0 s is chosen throughout. To specify reasonable initial conditions within the
fluid, a steady state solution of the fluid with a constant wall temperature Θ = 900 K
is computed.

The grid is chosen cartesian and equidistant in the structural part, where in the

(a) Entire mesh (b) Mesh zoom

Fig. 2 Full grid (left) and zoom into coupling region (right)

fluid region the thinnest cells are on the boundary and then become coarser in y-
direction (see figure 2). To avoid additional difficulties from interpolation, the points
of the primary fluid grid, where the heat flux is located in the fluid solver, and the
nodes of the structural grid are chosen to match on the interface Γ .

Table 1 Total number of iterations for 100 secs of real time without any extrapolation. Fixed time
step sizes versus adaptive steering.

TOL Fixed time step size Time adapt., ∆ t0 = 0.5s
10−2 ∆ t = 5s 64 31
10−3 ∆ t = 5s 82 39
10−4 ∆ t = 0.5s 802 106

We now compare the different schemes for a whole simulation of 100 seconds
real time. If not mentioned otherwise, the initial time step size is ∆ t = 0.5s. To
first give an impression on the effect of the time adaptive method, we look at fixed
time step versus adaptive computations in table 1. Thus, the different tolerances
for the time adaptive case lead to different time step sizes and tolerances for the
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nonlinear system over the course of the algorithm, whereas in the fixed time step
size, they steer only how accurate the nonlinear systems are solved. For the fixed
time step case, we chose ∆ t = 0.5s and ∆ t = 5s, which roughly corresponds to an
error of 10−2 and 10−3, respectively 10−4. Thus, computations in one line of table
1 correspond to similar errors. As can be seen, the time adaptive method is in the
worst case a factor two faster and in the best case a factor of eight. Thus the time
adaptive computation serves from now on as the base method for the construction
of a fast solver.

Table 2 Total number of iterations for 100 secs of real time with extrapolation

TOL none lin. quad.
10−2 31 19 25
10−3 39 31 32
10−4 106 73 77
10−5 857 415 414

Finally, we consider extrapolation based on the time integration scheme. In table
2, the total number of iterations for 100 seconds of real time is shown. As can
be seen, linear extrapolation speeds up the computations between 20% and 50%.
Quadratic extrapolation leads to a speedup between 15% and 50% being overall
less efficient than the linear extrapolation procedure. Overall, we are thus able to
simulate 100 seconds of real time for this problem for an engineering tolerance
using only 19 calls to fluid and the structure solver each.

To understand this more precisely, we considered the second stage of the sec-
ond time step in an adaptive computation. We thus have finished the first time step
with ∆ t0 = 0.5s and the second time step gets doubled, leading to ∆ t1 = 1s. This is
depicted in Figure 3. To obtain a temperature for the new time tn+1 the linear ex-
trapolation method (17) uses the values of the current time tn and of the first Runge-
Kutta Step at t1 +∆ t1c1. As can be seen, this predicts the new time step very well.
In contrast, the quadratic extrapolation (18) uses for the new time step the solution
from the previous time t0 the current time t1 and from the first Runge Kutta stage.
Since the exact solution has a more linear behavior in the time step, the quadratic
extrapolation provides no advantage, in particular since it slopes upward after some
point.

4.4 Cooling of a flanged shaft

As a second test case, we consider the cooling of a flanged shaft by cold high pres-
sured air, a process that’s also known as gas quenching. The complete process con-
sists of the inductive heating of a steel rod, the forming of the hot rod into a flanged
shaft, a transport to a cooling unit and the cooling process. Here, we consider only
the cooling, meaning that we have a hot flanged shaft that is cooled by cold high
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Fig. 3 Comparison of the linear and quadratic extrapolation methods for the time step t = 1.5s.

pressured air coming out of small tubes [25]. We consider a two dimensional cut
through the domain and assume symmetry along the vertical axis, resulting in one
half of the flanged shaft and two tubes blowing air at it, see figure 4. Since the air
nozzles are evenly distributed around the flanged shaft, we use an axisymmetric
model in the structure. The heat flux from the two-dimensional simulation of the
fluid at the boundary of the flanged shaft is impressed axially symmetrical on the
structure.

Fig. 4 Sketch of the flanged shaft
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We assume that the air leaves the tube in a straight and uniform way at a Mach
number of 1.2. Furthermore, we assume a freestream in x-direction of Mach 0.005.
This is mainly to avoid numerical difficulties at Mach 0, but could model a draft
in the workshop. The Reynolds number is Re = 2500 and the Prandtl number Pr =
0.72.

(a) Entire mesh (b) Mesh zoom

Fig. 5 Full grid (left) and zoom into shaft region (right)

The grid consists of 279212 cells in the fluid, which is the dual grid of an un-
structured grid of quadrilaterals in the boundary layer and triangles in the rest of the
domain, and 1997 quadrilateral elements in the structure. It is illustrated in figure 5.

To obtain initial conditions for the subsequent tests, we use the following proce-
dure: We define a first set of initial conditions by setting the flow velocity to zero
throughout and choose the structure temperatures at the boundary points to be equal
to temperatures that have been measured by a thermographic camera. Then, setting
the y-axis on the axis of revolution of the flange, we set the temperature at each
horizontal slice to the temperature at the corresponding boundary point. Finally, to
determine the actual initial conditions, we compute 10−5 seconds of real time using
the coupling solver with a fixed time step size of ∆ t = 10−6s. This means, that the
high pressured air is coming out of the tubes and the first front has already hit the
flanged shaft. This solution is illustrated in figure 6 (left).

Now, we compute 1 second of real time using the time adaptive algorithm with
different tolerances and an initial time step size of ∆ t = 10−6s. This small initial
step size is necessary to prevent instabilities in the fluid solver. During the course of
the computation, the time step size is increased until it is on the order of ∆ t = 0.1s,
which demonstrates the advantages of the time adaptive algorithm and reaffirms
that it is this algorithm that we need to compare to, see Fig. 7 left. In total, the
time adaptive method needs 22, 41, 130 and 850 time steps to reach t = 1s for the
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Fig. 6 Temperature distribution in fluid and structure at t = 0s (left) and t = 1s (right).
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The solution at the final time is depicted in figure 6 (right). As can be seen, the
stream of cold air is deflected by the shaft.

We now consider extrapolation based on the time integration scheme. In table
4, the total number of iterations for 1 second of real time is shown. As before, the
extrapolation methods cause a noticable decrease in the total number of fixed point
iterations. The linear and quadratic extrapolation, however, show a marked accel-
eration profit. For smaller tolerance measures TOL ≤ 10−4 the linear extrapolation
method is slightly better than the quadratic one. For the tolerance TOL = 10−5 a
significant improvement of the quadratic extrapolation is shown. When looking at



Extrapolation in Time in Thermal Fluid Structure Interaction 13

the number of iterations per time step, it is only after about half of the time steps that
quadratic extrapolation shows an advantage over the linear one. Then, the quadratic
extrapolation method takes an average of only one iteration, while the linear method
needs two iterations, see Fig. 7 right. Overall, the speedup from linear extrapolation
is between 18% and 34%, compared to the results obtained without extrapolation.
The speedup from quadratic extrapolation is between 10% and 35%.

Table 3 Total number of iterations for 1 sec of real time for different extrapolation methods in
time.

TOL none lin. quad.
10−2 51 42 46
10−3 126 97 96
10−4 414 309 310
10−5 2768 1805 1789

4.5 Heated rod

In a third example, we consider a rod, which is heated while suspended horizontally
over a table in a wind tunnel. This corresponds to another basic experiment related
to gas quenching of steel to study the coupling between the fluid and the solid. We
assume a very long rod, so we choose a cut transverse to the rod and calculate this by
a 2D simulation. The inflow is horizontally from the left with a velocity of 30 m/s,
corresponging to Ma∞ = 0.0906 and a temperature of 297K and at the lower side,
we have no slip boundary conditions. In the middle of the rod is a heating element
with a diameter of 10mm, which heats with 500W.

Nomenclature

800mm

27
0m

m

730mm

70
m

m

20mm

20
0m

m

Figure 0.1: Illustration of the continuous (dashed line) and the discontinuous (full line)
Galerkin time integration schemes with strong or weak enforcement of the
continuity of the state variables u, u̇ and ü for the single field formulation
and u, v and v̇ for the two field formulation at the time element boundaries.

1

Fig. 8 Sketch of the heating rod

Both grids are unstructured with the fluid grid consisting of 236003 quadrilat-
eral and triangular cells, see Fig. 9, whereas the solid grid has 1078 quadrilateral
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elements. The Reynolds number for this test case is Re = 406051 and the Prandtl
number is Pr = 0.72.

(a) Entire mesh (b) Mesh zoom

Fig. 9 Full grid (left) and zoom into rod region (right)

296.85
296.97
297.09
297.22
297.34
297.46
297.59
297.71
297.84
297.96

temperature [K]

Fig. 10 Temperature distribution in fluid and structure at t = 0s with entire domain.

(a) Entire domain (b) Zoom

Fig. 11 Temperature distribution in fluid and structure at t = 10s with entire domain (left) and
snippet of the rod (right).

296.85
305.82
314.80
323.78
332.76
341.74
350.72
359.69
368.67
377.65

temperature [K]

The initial condition for the solid is a constant temperature of 297K. The starting
point of the fluid was conducted by a simulation until a steady state was established,
see Fig. 10. As with the other examples, the adaptive time step control has a great
advantage in the course of the computation. It starts with a time step size of ∆ t =
10−6s and grows by the end of the simulation to ∆ t = 4.19s. The adaptive method
needed for 10s of computation 59 - 299 time steps, a fixed time step size requires
107 steps. The solution at the final time T = 10s is depicted in figure 11. In the
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outer regions a constant temperature can be seen, while behind of the rod due to the
influence of the heating a thermal wake occurs.

In table 4, the total number of iterations for 10 second of real time is shown. For
all tolerances the linear extrapolation method is slightly better than the quadratic
one. In this case, none of the methods requires many iterations, so that none of
the extrapolation methods has an advantage. Only with a decreasing tolerance limit
TOL ≤ 10−4 for the subsolvers itself as well as for the coupling solver, the extrap-
olation procedures use their advantage. The speedup from linear extrapolation is
between 11% and 16%, compared to the results obtained without extrapolation. The
speedup from quadratic extrapolation is between 10% and 15%.

Table 4 Total number of iterations for 10 sec of real time for different extrapolation methods in
time.

TOL none lin. quad.
10−2 59 57 59
10−3 58 58 60
10−4 99 88 89
10−5 299 252 255

5 Summary and Conclusions

We considered a time dependent thermal fluid structure interaction problem where
a nonlinear heat equation to model steel is coupled with the compressible Navier-
Stokes equations. The coupling is performed in a Dirichlet-Neumann manner. As a
fast base solver, a higher order time adaptive method is used for time integration.
This method is significantly more efficient than a fixed time step method and is
therefore the scheme to beat.

To reduce the number of fixed point iterations in a partitioned spirit, extrapolation
based on the time integration was tried out. This reduces the number of iterations by
up to 50%. Hereby, linear extrapolation works better than quadratic.

The combined time adaptive method with linear extrapolation thus allows to
solve real life problems at engineering tolerances using only a couple dozen calls to
the fluid and structure solver.
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