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Abstract. We look at multigrid methods for unsteady viscous compressible flows. We specif-
ically target smoothers that can be used in parallel and without computation of a Jacobian,
which are particlarly attractive candidates in the context of Discontinuous Galerkin discretiza-
tions. In CFD, a plethora of nonlinear smoothers have been suggested which are hard to ana-
lyze. Our methodology is to use a linear model problem, here the convection diffusion equation,
to be able to classify and compare smoothers better. Specifically, we consider explicit and im-
plicit pseudo time iterations, GMRES as a smoother, SGS and implicit line smoothers. We relate
GMRES to explicit Runge-Kutta smoothers, identify implicit line smoothers as Block Jacobi and
analyze the potential of implicit pseudo time iterations. Finally, we discuss the relation between
methods for steady and unsteady flows. Numerical results show that GMRES is a very attractive
smoother in this context.



Philipp Birken, Jonathan Bull, and Antony Jameson

1 INTRODUCTION

After decades of research, numerical methods for solving steady fluid flows have reached an
appreciable level of maturity. It has been demonstrated that steady Euler flows can be solved
with ‘textbook’ efficiency in three to five multigrid iterations [3]. The added stiffness of the
steady RANS equations means that convergence of the multigrid method is somewhat slower -
between 50 and 100 iterations [11]] - but still within acceptable bounds for CFD applications.

For unsteady problems, the expectation would be to significantly reduce this number, but
this is not the case for the available methods [2]. When looking at high order methods, which
will be necessary to do LES simulations in an industrial setting, there is the situation that a fast
multigrid method is quite simply missing. On reason for this is the lack of guiding theory for
nonelliptic equations, which makes designing a multigrid method difficult.

Multigrid consists of two components, the smoother and the coarse grid correction. For
finite volume methods, the coarse grid correction is based on agglomeration of neighboring
cells. As smoothers for compressible flows, a plethora of both linear and nonlinear methods has
been suggested. This ranges from LU-SGS [3]], explicit Runge-Kutta methods [13], additive
Runge-Kutta methods [S)], implicit line smoothers [12, 8], and more recently point implicit and
SDIRK smoothers [7, 9], GMRES [4], GMRES within a Rosenbrock pseudo time iteration [10]
and many others. In particular, implicit smoothers, that are variants of implicit pseudo time
iteration smoothers, allow for a huge variety of methods.

When thinking of LES simulations with discontinuous Galerkin methods, we have to keep in
mind that the Jacobians will consist of blocks that have a size of a few hundred, instead of just
five as it would be with finite volume methods. Our strategy to obtain a parallel scaling, fast and
low memory multigrid method is therefore to not use a Jacobian, but only function evaluations,
meaning evaluations of the spatial discretization. This can happen in one of two ways: There
is a nonlinear version of a linear iterative method that avoids use of the Jacobian. This is for
example the case for pseudo time iterations where a matrix vector product corresponds to a
function evaluation. The other option is to replace matrix vector products by a Jacobian free
finite difference.

Previous work by one of the authors [1] demonstrated that the smoothers used in the multi-
grid iteration could be optimized for fastest convergence of the unsteady linear advection equa-
tion. Specifically, it was suggested to numerically minimize the spectral radius of the multi-
grid iteration matrix over the pseudo timestep and coefficients of explicit Runge-Kutta (RK)
schemes. Significant improvements were demonstrated in both cases compared to non-optimized
smoothers.

In this paper we aim at getting a better understanding of the differences between these meth-
ods for both the steady and the unsteady case. To this end, we classify these methods, The
findings will be backed up by numerical results based on the convection diffusion equation as a
model problem.

2 GOVERNING EQUATIONS AND DISCRETIZATION

We consider the linear advection diffusion equation
U + atly — by, = 0. (1)

with a, b > 0 on the interval x € |0, 2] with periodic boundary conditions.
An equidistant FV discretization for (I) with mesh width Ax leads to the evolution equation
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for the cell average u; in one cell i:
a b
R () ¥ R

Using the vector u = (uy, ..., u,,)” and the matrices

1 -1
-1 1
B = -1 1
-1 1
and
2 -1 -1
-1 2 -1
C= -1 2
. .o =1
-1 -1 2
we obtain the system of ODEs
+ " Bu(t) + ——Cu(t) =0 2)
WA Az~ T

In 2D, we have the following equation for the unknown function u(x, y,t):
uy +a- Vu — bAu = 0, 3)

where b > 0 and

with 5 € R being another parameter and ~ the angle of the direction of forced convection.
Regarding boundary conditions, we use periodic ones.

An equidistant FV discretization for (3) with mesh width Az = Ay leads to the evolution
equation for the cell average u; ; in one cell (i, j):

a
umt + E((C + S)ULJ — sui,u — cui,j,l)

o (T Ui A — Uiy — Uia) = 0.

Using the vector u = (uy, ..., u,,)” and the matrices

ool
|
2,

—sI B
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where
c+s —C
—c c+s
B = —Cc Cc+s
—Cc Cc+ s
and _
C -1 —I
-1 C -1
C= . :
1 -1 C
where
4 -1 -1
-1 4 -1
C= -1 4
o
—1 -1 4

Finally, we obtain the system of ODEs

a b
—Bu(t ——Cu(t) =0. 4
Az u()+Aa:2 u(t) @
We discretize this in time using implicit Euler with time step size At, which is also a building
block for the more general diagonally implicit Runge-Kutta (DIRK) methods. Thus, in each
time step, a linear system has to be solved. Using the notation u” ~ u(t,), this can be written
as

ut+

aAt bAt

n+1 n n+1 n+l __
u —u +A—xBu +AxQCu =0
su”— Au"tt =0 5
where 5 "
A=|I+-—DB+-——C 6
< * Az + Az? ) ©

with v = aAt and p = bAt. Here, CFL := aAt/Ax corresponds to the CFL number in the
implicit Euler method. If we consider nonperiodic boundary conditions, the entry in the upper
right corner of B becomes zero. Otherwise, additional terms appear on the right hand side, but
this does not affect multigrid convergence.

In a steady state, the time dependence vanishes and we obtain the equation system

a
7B — .
. u=20 (7)

3 LINEAR ITERATIVE METHODS FOR LINEAR EQUATION SYSTEMS

A very important type of iterative method for the linear equation system

Ax=b, AcR™™ x,becR"™ (8)

are linear iterative methods which can be written as

4
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x"1 = Mx" + N~!'b, M,N € R™™,

It can be shown that this converges if and only of p(M) < 1, which is why M is called the itera-
tion matrix. The second matrix determines the limit in case of convergence. To get convergence
to the solution of the linear equation system [8] it is required that M = T — N~!A.

4 MULTIGRID METHOD

As a solver, an agglomeration multigrid method is used, which corresponds best to finite
volume discretizations. Thus, in the one dimensional case, the restriction and prolongation
correspond to joining and dividing neighboring cells and are given by

1
1

R=_ ) ) and P = 2R” = 1

Hereby, it is assumed that we have an even number of cells.

The coarse grid matrix is obtained by discretizing the problem on that grid. On the coarsest
level, the smoother is applied instead of the usual direct solver, since this better corresponds to
the Full Approximation Scheme used for the nonlinear equations. We use a V-cycle and pres-
moothing only. Thus we obtain the scheme:

Function MG(x;, by, 1)
e x; = S;*(x;, b;) (Presmoothing)
o if (I >0)
- r;-1 = Ri_1,(b; — A;x;) (Restriction)

- Vi1 = 0

Call MG(v;_1,r;_1,1 — 1) (Computation of the coarse grid correction)

- x; = x; + Py;_1v;_1 (Correction via Prolongation)
e end if
Thus, the iteration matrix of the corresponding two grid scheme is given by
M= (I-Py (NG 'Ri_1,A)MY )

with MY and (N%) ™! being the matrices defining the smoother. In a standard two grid method,
the matrix Ng' would be A; ", instead.
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o (6] Qa3 C
ERK?2 | 0.28 1.1
ERK4 | 0.04 0.12 03220

Table 1: Coefficients for 2- and 4-stage ERK smoothers.

4.1 Smoothers

We consider a smoother to be good if the spectral radius of the iteration matrix is small.
As a design criterion, this results in good smoothers, but it is expensive to use [1]. The main
alternative is the smoothing factor, which is the slowest rate at which the error in one of the
high frequency components is reduced by the smoother. To this end, the eigenvectors of A are
determined and split into low and high frequency components.

4.1.1 Pseudo time iterations

The first class of smoothers we consider are time integration schemes. These approximate
the solution of an initial value problem

w = f(u), u,=ult,).

To apply them as iterative solvers for a linear equation system, the residual of that is used as the
right hand side f(u). The differential equation resulting from (5] is given in a pseudo or dual
time t*:
us =u" — Au(t), u(t;) =u". (10)

One step of a pseudo time iteration thus consists of performing one step of the RK scheme
for the solution of equation (I0). The pseudo time step A¢* is a parameter of this class of
smoothers, as are their coefficients. However, instead of At*, we will use the CFL number in
pseudo time ¢ = aAt* /Ax as a parameter. This implies that on coarser grids, larger time steps
will be chosen, leading to faster multigrid methods.

The simplest smoothers of this type are low storage explicit Runge-Kutta methods, which
can be implemented using only three vectors. These are described by

Uy = 4,
u; = u, + O[jAt*f(u]'_1>, ] = ]_, ey § — 1
Uy = U, + At*f(us—l)u

For s = 1, we obtain he explicit Euler method, which is nothing but a Richardson smoother:
u ! = uf + At (" — Au”) = ot + At (11)

In the linear case, a general Runge-Kutta method can be represented by its stability function
R(z), which for explicit Runge-Kutta methods is a polynomial P,(z) of degree s. Thus, the
iteration matrix is for our case given by

M = P,(—AtA).

The specific schemes used here are a 2-stage and a 4-stage scheme taken from [ 1], where the
coefficients for the case of a large outer time step are taken. These can be seen in Table[l]

6
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i1 2 3 4 5 |¢
ARK4 |o; | 173 415 59 1 - |05
Gl1 12 o o -

ARKS | o; | 174 1/6 3/8 172 1 |02
Bi| 1 0 056 0 044

Table 2: Coefficients of additive Runge-Kutta smoothers, 4-stage and 5-stage method.

In [6], Jameson, Schmidt and Turkel introduced additive Runge-Kutta methods, where dif-
ferent coefficients are used for the convective and the diffusive parts. This is done to reduce
the number of evaluations of the expensive diffusive terms, but also to increase the degrees of
freedom in choosing a good smoother. Given a splitting in the convective and diffusive part

f(u) = £(u) + £*(u),
Jameson suggests to implement these schemes in the following equivalent form
ul(o) =
ul(j) =u — O./]'Atl<fc’(j71) + fv’(jfl)), j = 17 ey S

uit! = uf”,
where
¢, () _ pcf.(d) < .
f =f(w”), 7=0,...,s—1
£ = t*(u”),
£20) = g (ul?) + (1 — gD, =1, s —1.
For our model problems, we have f°(u) = b — Bu and f”(u) = —Cu. The iteration matrix

now involves both powers of the single matrices, as well as products, making it very difficult to
analyze. The schemes we consider were designed in [3] and the coefficients are given in Table

The smoothing factor is the maximum of the stability function over the high frequency eigen-
values:

max |[R(\)].
AHF
Thus we look for methods with an optimal smoothing factor, found by
min max |R(\)].
a,At* Agp

For an ERK scheme, this gives

min max | Py(A)]. (12)

The vector « contains the coefficients of the time integration method. Here, we will, instead
of the pseudo time step At*, use the CFL number in pseudo time, c*, giving

min max |R(\)|. (13)
o,c* Agp

In case of an implicit RK method, the stability function is rational, e.g. R(z) = 1/(1 + 2)
for the implicit Euler method. However, this implies that the application of the smoother con-
sists of solving the original linear equation system, defying the purpose of an iterative method.
Therefore, the arising system is solved using another iterative method, resulting in new families
of smoothers. We will consider the particular case of the implicit Euler method, combined with
GMRES.
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4.2 GMRES

Given the matrix A and a residual vector ry = b — Ax?, the space
IC; = span{r,, Ar, ..., A"y}

is called the [-th Krylov subspace. Using this, the k-th iteration of GMRES is the solution of
the problem
min ||b — Ax||s, (14)

IG:E(O)+/Ck
If z € 2 + K, then
k—1 ‘ k-1 ‘
x =xO + 3 A% =x© + 3 4,A/ (b - AX").
=0 =0

Thus, the iteration can be written as

k-1 k
xF =" 3,Ab + > ;A
j=0 j=0

for some coefficients 7, and the iteration matrix is

k
MEVRES _ 35, AT — py (A).

J=0

Thus, the iteration for a GMRES method with fixed % steps is represented by a polynomial
of degree k in A or otherwise put, a rational function is approximated by a polynomial. The
difference to an explicit RK iteration is that the coefficients are not fixed a priori, but depend
on the choice of Krylov subspace, in this case on the residual ry. This means that the smoother
will behave differently for different initial guesses. This also means that it is difficult to analyze
the smoothing factor. At least, from the definition of GMRES, we see that

Il = _min  Ip(A)roll2 < [p(A)roll
which is similar to @) The first difference is that here, the optimization takes into account
all eigenvalues, whereas the previous one looks only at the high frequency ones. Then, the
optimization here is dynamic in the sense that it is done automatically by GMRES for each
linear system seperate, which makes this approach potentially more robust. For the optimized
ERK schemes, it could happen that when operating in off design conditions, the performance
significantly deteriorates.

When considering the use of GMRES within an implicit Runge-Kutta smoother, the follow-
ing property is important. For A =1+ aB,

span{rg, Ar, ..., A"'ry} = span{rg, Br, ..., B 'ry}

and thus, for the same vector r( the Krylov subspaces are identical. Now we look at the follow-
ing two approaches:

1. Use k-step GMRES as smoother
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2. Use a smoother which consists of one implicit Euler step, where the linear system is
solved using k-step GMRES

In the first case, we look at the system
I+ AtBju=u"

with residual
r=u"— (I+AtB)u (15)

In the second case, the system is
I+ At*(I+ AtB)Ju = u* + At*u”
with residual
r* =u" + At'u” — [[+ A1+ AtB)Ju = u* —u + At*r. (16)

By the property named above, the Krylov subspaces generated will be K. (B, r) and K (B, u*—
u + At*r), respectively. On the fine grid, the initial guess for the smoother is u* and thus
r; = u® — u + At*r = At*r, and therefore, the two spaces are identical. However, the resid-
uals and minimized by GMRES are different and therefore, unless the solution is in
that space, a different result will be obtained. However, for a large value of At*, this difference
will vanish.

On the coarse grid, we have a zero initial guess for the equation (I+A¢B)e = r and therefore
in the first case,

ro=r— (I+AtB)0=r.

For the second variant we have the equation
[T+ At*(I+ AtB)le = u* + At*u” — [T+ At*(I + AtB)Ju*!

and thus
fo = u* — U + At'r.

Thus, on the coarse grids, the smoothers no longer operate in the same Krylov subspace. Again,
for a large value of At*, this difference will vanish. Thus, we expect the two smoothers to
behave the same way for a sufficiently large pseudo time step.

4.3 Symmetric Gauss-Seidel

Given a splitting of the matrix A into its strictly lower, diagonal and strictly upper part,
A =L + D + U, the symmetric Gauss-Seidel (SGS) iteration is given by

u*' = (I— (D +U)"'D(L +D)'A)u* + (D + U)"'D(L + D)~ !b,
thus the iteration matrix is
M =1 (D +U)'D(L+D)'A.

This method is parameter free and thus its smoothing factor depends on the problem only. SGS
is implemented by solving two equation systems with triangular system matrices.

9
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s-ARK s-ERK GMRES-k SGS 1ILS
s+1 s+1 k+ 2 3.5 5

Table 3: Computational effort of multigrid method in terms of function evaluations, respectively MatVecs.

4.4 TImplicit line smoothers

For compressible viscous flows, implicit point smoothers and implicit line smoothers (ILS)
are sometimes used. Both are in effect variants of block Jacobi smoothers, meaning that the
following iteration is used

" =I-D'A)u" + D 'b,

where D is a certain block diagonal matrix. For the point implicit smoother, the small blocks
of the size of the number of equations in the PDE system (four for 2D Navier-Stokes or Euler,
5 in 3D). Since the convection diffusion equation is scalar, this reduces to the normal Jacobi
smoother, which is not a good method. Therefore, we only consider implicit line smoothers
here.

These are used typically in boundary layers with lines going a finite length in a direction
normal to the boundary. Then the block is defined from the unknowns in that line and has the
size as the number of equations corresponding to these unknowns. Here, we will use in the 2D
case lines going in z-direction through the the whole domain, meaning that there is exactly one
line for each discrete y value and their length is the number of unknowns in z-direction. We
denote this smoother as ILS.

4.5 Computational effort

The convergence rate of a multigrid method with a specific smoother is important, but it
needs to be evaluated with regards to the computational effort needed. In the nonlinear case,
the cost should be measured by the number of evaluations of the right hand side, involving
computation of numerical fluxes and so on. In the linear case, this corresponds to matrix vector
products (MatVecs). For an s-step ERK or a k-step GMRES smoother, the number of these
is easy to determine, namely s and k + 1. For an ARK method, it should be noted that while
we actually increase computational effort in the linear case, this is not so in the nonlinear case,
where the computation of viscous and inviscid fluxes is essentially independent. Thus, we
consider the ARK smoother to have a computational effort proportional to s MatVecs as well.

With regards to SGS, there is one MatVec, one multiplication with a diagonal and two solves
with tridiagonal equation systems. The latter take together slightly more than on MatVec, which
is why we use 2.5 MatVecs as a measure for SGS. As for ILS, this requires solving a number
of equation systems of smaller dimension. This is hard to predict, which is why we compared
the CPU time for the use of that to one MatVec, arriving at a factor of four. Added to cost of
a smoother in the present context is the cost of the MatVec needed for the computation of the
residual on the fine grid.

4.6 Steady versus unsteady

We now consider the case of a parameter dependent smoother with parameter w for the
linear equation system Ax = b. This could be a damping parameter or a pseudo time step size,
respectively CFL number in pseudotime. The iteration matrix is then of the form M*(wA).
Assume that we have determined an optimal coefficient w* for a steady state problem. For an

10
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c ImpE  GMRES-2
1 0.4903 0.3772
10 0.3798 0.3772
100 | 0.3774  0.3772
1000 | 0.3773 0.3772

Table 4: Measured convergence rate of the multigrid method for 1D convection diffusion using 2-step GMRES
directly vs. 2-step GMRES inside implicit Euler smoother, N = 128.

c ImpE  GMRES-2
1 0.5835  0.4870
10 0.4937  0.4870
100 | 0.4876  0.4870
1000 | 0.4871 0.4870

Table 5: Measured convergence rate of the multigrid method for 2D convection diffusion using 2-step GMRES
directly vs. 2-step GMRES inside implicit Euler smoother, N=128.

unsteady problem, we obtain the system matrix I — AtA. Under the assumption of a large outer
CFL number, the identity matrix can be neglected and the matrix to consider is AtA and the
smoother is of the form M*®(wAtA). To obtain the optimal coefficient for this case, we thus
have to divide w* by At. This gives us a smoothing factor that is approximately the same as for
the steady state and means that it is sufficient to design the smoother based on the steady state
problem only.

If we instead of the pseudotime consider a CFL number, then from the condition cg = ¢;; on
the optimal parameter, we obtain

o = cAt] = At = ¢y /e = Aty /At.

This implies that in the unsteady case, the larger the outer time step, the smaller the pseudo time
step has to be. However, this does not decrease the smoothing factor, as seen above.

5 NUMERICAL RESULTS
5.1 Implicit pseudo time iterations

We first test the difference between using an implicit pseudo time iteration with a certain
smoother compared to using that smoother directly on the example of GMRES with 2 steps.
The first test case is the one dimensional convection diffusion equation with ¢ = 1, b = 0.001,
At = 0.5. We now vary the pseudo time CFL number and compare the convergence rates, as
seen in Table 4, The second test case is the two dimensional convection diffusion equation with
convection speed @ = 1 and angle v = 7/4, b = 0.001, At = 0.5. Again, the pseudo time CFL
number c is varied and the results can be seen in table

As can be seen, for about value for ¢ of 1000, there is no essentially no difference between
convergence rates, as predicted by the theory. Furthermore, the convergence rate of the method
with pseudotime iteration is decidedly smaller for small c. Thus, we do not see a benefit in this
class of methods.

5.2 Variants of GMRES

‘We now test the results of section The first test case is the one-dimensional convection
diffusion equation with @ = 1, b = 0.001, At = 0.5. As a smoother k-step GMRES is used.

11
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Az | 1 2 3 4
1/64 ] 0.6643 0.3853 0.2955 0.1801
1/128 | 0.6979  0.427 0.3345 0.2120
1/256 | 0.7484 0.4522 0.3645 0.2322

Table 6: Measured convergence rate of the multigrid method for 1D convection diffusion when using k-step
GMRES as a smoother.

Az | 1 2 3 4

1/64 | 0.8725 0.7879 0.7836 0.7097
1/128 | 0.8870 0.8084 0.8033 0.7333
1/256 | 0.9079 0.8200 0.8172 0.7467

Table 7: The k 4 2-nd root of the measured convergence rate of the multigrid method for 1D convection diffusion
when using k-step GMRES as a smoother.

In Table 6] the convergence rates observed in practice of the multigrid method can be seen for
different Ax and different k. As can be seen, increasing the dimension of the Krylov subspace
used, respectively the degree of the polynomial, decreases the convergence rate. Furthermore,
the convergence rate increases with a finer mesh width, but not terribly so.

To get a better picture of the efficiency of the smoother, we now look at the £ 4 2-nd root of
the convergence rate measured. As can be seen in Table [/} increasing the number of smoothing
steps shows an improving trend. It is also noticeable that an even number of steps perform
slightly better than an odd number.

As a second test case, we use the two-dimensional convection diffusion equation with a = 1,
v = w/4, b = 0.001, At = 0.5. As a smoother k-step GMRES is used. In Table |8 the
convergence rates observed in practice of the multigrid method can be seen for different Ax.
As can be seen, increasing the dimension of the Krylov subspace used, respectively the degree
of the polynomial, decreases the convergence rate. Furthermore, the convergence rate increases
with a finer mesh width, but not terribly so. Again, the k£ + 2-nd root of the convergence rate
measured is shown in Table[9] Now the root is approximately constant on a particular mesh, but
goes up from k = 3 to k = 4. Thus, 2- and 3-step GMRES perform about the same. Since the
cost per iteration in GMRES increases with due to the increasing number of scalar products, we
consider 2-step GMRES to be the most promising method.

5.3 Comparison of smoothers

Now all the smoothers under consideration are compared. The first test case is the two-
dimensional convection diffusion equation with a = 1, v = 7/4, b = 0.001, At = 0.5 and a
two-level multigrid cycle. Table [10]lists the convergence rates obtained with all smoothers. We
test the effect of using the smoother vs. a direct solver on the coarsest multigrid level. In Table
the m-th root of the convergence rates is listed; the values of m are given in Table 3| Using

Az | 1 2 3 4

132 105192 03853 0.2838 0.2726
1/64 | 0.5913 0.4506 03576 0.3531
1/128 | 0.6326 0.4870 0.4076 0.3975

Table 8: Measured convergence rate of the multigrid method for 2D convection diffusion when using k-step
GMRES as a smoother.

12
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Az | 1 2 3 4

132 | 0.8037 0.7879 0.7773 0.8052
1/64 | 0.8393 0.8193 0.8141 0.8407
1/128 | 0.8584 0.8354 0.8357 0.8575

Table 9: The k + 2-nd root of the measured convergence rate of the multigrid method for 2D convection diffusion
when using k-step GMRES as a smoother.

direct smoother

Scheme 1/32 1/64 1/128 1/32 1/64 1/128
ARK4 0.5330 0.5430 0.5397 | 0.8034 0.8977 0.9471
ARKS5 0.6473 0.6412 0.6266 | 0.9169 0.9580 0.9787
RK2 0.4312 0.4646 0.4789 | 0.7049 0.8452 0.9198
RK4 0.3505 0.4130 0.4428 | 0.4749 0.7129 0.8479
ImpE 0.2654 0.3541 0.4165 | 0.3539 0.5675 0.7608
GMRES | 0.2658 0.3541 0.4158 | 0.3576  0.5679  0.7583
SGS 0.0875 0.2013 0.3489 | 0.1019  0.2854  0.5998
ILS 0.7814 0.8334 0.8494 | 0.7344 0.8496  0.9246

Table 10: The measured convergence rate of the 2-level multigrid method for 2D convection diffusion with v =
/4 when using smoother vs. direct solve on coarsest multigrid level.

a smoother is less effective than a direct solver as a coarse-grid method. The best smoother
in terms of computational effort is SGS. Explicit multistep smoothers (RK and ARK) achieve
relatively poor convergence rates. The implicit line smoother achieves the slowest convergence
because the lines are not aligned with the convection direction.

In the next test, the number of multigrid levels is increased to the maximum possible for
each N: ie. log,(N). Tables |12 and [13|list the convergence rates and their m-th roots. The
choice of smoother/direct solver on the coarsest grid is insignificant. Overall, convergence rates
are improved by the increased number of multigrid levels. As in the two-level test, SGS is the
fastest-converging smoother. However, the m-th root of convergence rate increases with /N and
on the finest grid RK2 has comparable values. On still finer grids SGS may not be the clear
winner.

As a final test the convection angle is set to v = 7/2 so that the lines of ILS are aligned
with the flow. The number of multigrid cycles is kept at log,(/N). Tables |14] and |15| list the
convergence rates and their m-th roots respectively. Most notable is the ILS convergence rate is
greatly improved at lower V. The other schemes follow the opposite trend, their convergence
rates getting larger at v = /2.

6 CONCLUSIONS

We considered different smoothers in an agglomeration multigrid method for a finite volume
discretization of the linear convection diffusion equation. For these, we considered different
smoothers, namely explicit and additive Runge-Kutta methods, GMRES with a fixed number of
steps, SGS and implicit line smoothers. We related GMRES to optimized explicit RK methods
in that GMRES automatically chooses a polynomial that optimizes residual reduction over all
eigenvalues, not just the ones relevant for smoothing. In the case of GMRES, we analyze and
demonstrate by numerical experiments that implicit pseudo time iterations do not offer a benefit
compared to using the inner method directly as a smoother. Implicit line smoothing turns out to
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direct smoother
Scheme 1/32 1/64 1/128 1/32 1/64 1/128
ARK4 0.8817 0.8850 0.8840 | 0.9572 0.9786  0.9892
ARKS 0.9301 0.9286 0.9251 | 0.9856  0.9929  0.9964
RK2 0.7555 0.7745 0.7824 | 0.8900  0.9455  0.9725
RK4 0.8109 0.8379 0.8497 | 0.8616  0.9346  0.9675
ImpE 0.8016 0.8411 0.8642 | 0.8410 0.9099  0.9555
GMRES | 0.8018 0.8411 0.8639 | 0.8425 0.9100  0.9549
SGS 0.4985 0.6325 0.7402 | 0.5208  0.6989  0.8641
ILS 0.9519 0.9642 0.9679 | 0.9401 0.9679  0.9845

Table 11: The m-th root of the measured convergence rate of the 2-level multigrid method for 2D convection

diffusion with v = 7 /4 when using smoother vs. direct solve on coarsest multigrid level. Table lists the value of
m for each scheme.

direct smoother

Scheme 1/32 1/64 1/128 1/32 1/64 1/128
ARK4 0.5562 0.5918 0.6143 | 0.5624  0.5907 0.6105
ARKS5 0.6780 0.7035 0.7295 | 0.6876  0.7101  0.7364
RK2 0.4130 0.4275 0.4497 | 0.4144 0.4332  0.4558
RK4 0.2933 0.3550 0.3868 | 0.2931 0.3539  0.3867
ImpE 0.2716 0.3527 0.3969 | 0.2717 0.3527 0.3969
GMRES | 0.2726 0.3533 0.3974 | 0.2726  0.3533 0.3974
SGS 0.0817 0.1938 0.3358 | 0.0818 0.1938 0.3358
ILS 0.9019 1.1877 1.4010 | 09787 1.2581 1.4712

Table 12: The measured convergence rate of the log, (/N)-level multigrid method for 2D convection diffusion with
~ = /4 when using smoother vs. direct solve on coarsest multigrid level.

direct smoother

Scheme 1/32 1/64 1/128 1/32 1/64 1/128

ARK4 0.8893 0.9004 0.9071 | 0.8913 0.9001  0.9060
ARKS5 0.9373 09431 0.9488 | 0.9395 0.9445 0.9503
RK2 0.7447 0.7533 0.7662 | 0.7455 0.7566  0.7696
RK4 0.7824 0.8129 0.8270 | 0.7824  0.8124  0.8270
ImpE 0.8048 0.8406 0.8573 | 0.8048 0.8406 0.8573
GMRES | 0.8052 0.8408 0.8574 | 0.8052 0.8408 0.8574
SGS 0.4889 0.6258 0.7321 | 0.4890 0.6258 0.7321
ILS 0.9796 1.0350 1.0698 | 0.9957 1.0470 1.0803

Table 13: The m-th root of the measured convergence rate of the log, (IV)-level multigrid method for 2D convection
diffusion with v = 7 /4 when using smoother vs. direct solve on coarsest multigrid level.
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direct smoother

Scheme 1/32 1/64 1/128 1/32 1/64 1/128
ARK4 0.8964 0.8893 0.8539 | 0.8966 0.8897  0.8538
ARKS5 0.9440 09378 09158 | 0.9443 0.9388 0.9179
RK2 0.8506 0.8469 0.7996 | 0.8506  0.8469  0.7995
RK4 0.7352 0.7427 0.6857 | 0.7352  0.7427 0.6857
ImpE 0.4314 0.5400 0.5652 | 0.4314 0.5400 0.5652
GMRES | 0.5183 0.5719 0.5634 | 0.5183 0.5719 0.5634
SGS 0.1156 0.2422 0.4414 | 0.1156  0.2422 0.4414
ILS 0.1913 04768 0.7437 | 0.1913 0.4768  0.7437

Table 14: The measured convergence rate of the log, (N)-level multigrid method for 2D convection diffusion with
~ = /2 when using smoother vs. direct solve on coarsest multigrid level.

direct smoother

Scheme 1/32 1/64 1/128 1/32 1/64 1/128
ARK4 09784 09768 0.9869 | 0.9784 0.9769 0.9869
ARKS 0.9904 0.9893 0.9855 | 0.9905 0.9895 0.9858
RK2 09475 09461 0.9282 | 0.9475 0.9461 0.9281
RK4 0.9403 09422 09273 | 0.9403 0.9422 0.9273
ImpE 0.8693 0.9024 0.9093 | 0.8693  0.9024  0.9093
GMRES | 0.8963 009111 0.9088 | 0.8963 09111  0.9088
SGS 0.5398 0.6668 0.7917 | 0.5398 0.6668 0.7917
ILS 0.7183 0.8623 0.9425 | 0.7183  0.8623  0.9425

Table 15: The m-th root of the measured convergence rate of the log, (V)-level multigrid method for 2D convection
diffusion with v = 7 /2 when using smoother vs. direct solve on coarsest multigrid level.
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be a specific block Jacobi method.

When looking at computational effort measured in terms of matrix vector products, 2-step
GMRES and SGS perform best. Since the latter is not parallel, 2-step GMRES is a very inter-
esting candidate for further study.
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